993 resultados para Supramolecular architecture
Resumo:
It is a challenge to increase the visible-light photoresponses of wide-gap metal oxides. In this study, we proposed a new strategy to enhance the visible-light photoresponses of wide-gap semiconductors by deliberately designing a multi-scale nanostructure with controlled architecture. Hollow ZnO microspheres with constituent units in the shape of one-dimensional (1D) nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks are synthesized via an approach of two-step assembly, where the oligomers or the constituent nanostructures with specially designed structures are first formed, and then further assembled into complex morphologies. Through deliberate designing of constituent architectures allowing multiple visible-light scattering, reflections, and dispersion inside the multiscale nanostructures, enhanced wide range visible-light photoresponses of the ZnO hollow microspheres were successfully achieved. Compared to the one-step synthesized ZnO hollow microspheres, where no nanostructured constituents were produced, the ZnO hollow microspheres with 2D nanosheet stacks presented a 50 times higher photocurrent in the visible-light range (λ > 420 nm). The nanostructure induced visible-light photoresponse enhancement gives a direction to the development of novel photosensitive materials.
Resumo:
Run-time interoperability between different applications based on H.264/AVC is an emerging need in networked infotainment, where media delivery must match the desired resolution and quality of the end terminals. In this paper, we describe the architecture and design of a polymorphic ASIC to support this. The H.264 decoding flow is partitioned into modules, such that the polymorphic ASIC meets the design goals of low-power, low-area, high flexibility, high throughput and fast interoperability between different profiles and levels of H.264. We demonstrate the idea with a multi-mode decoder that can decode baseline, main and high profile H.264 streams and can interoperate at run.time across these profiles. The decoder is capable of processing frame sizes of up to 1024 times 768 at 30 fps. The design synthesized with UMC 0.13 mum technology, occupies 250 k gates and runs at 100 MHz.
Resumo:
Building on previous discourse regarding the ability of media architecture to be more open and accessible for the purposes of community engagement (Caldwell & Foth, 2014), this chapter explores a particular case study that was designed, constructed and implemented with the intention of allowing city users to participate in the development and creation of media architecture, the InstaBooth. In this chapter, we first explore DIY (do it yourself) and DIWO (do it with others) phenomena to examine what motivates the DIY cultures, communities, and practices. Secondly, in this chapter, we define and discuss our implementation of a DIY / DIWO media architecture example, the InstaBooth. The InstaBooth project pro-vides an opportunity to question the effectiveness of a DIY driven media architec-ture artefact to see to what extent it impacts on the experience of its users and for what benefit.
Scopophobia/Scopophilia: electric light and the anxiety of the gaze in postwar American architecture
Resumo:
In the years of reconstruction and economic boom that followed the Second World War, the domestic sphere encountered new expectations regarding social behaviour, modes of living, and forms of dwelling. This book brings together an international group of scholars from architecture, design, urban planning, and interior design to reappraise mid-twentieth century modern life, offering a timely reassessment of culture and the economic and political effects on civilian life. This collection contains essays that examine the material of art, objects, and spaces in the context of practices of dwelling over the long span of the postwar period. It asks what role material objects, interior spaces, and architecture played in quelling or fanning the anxieties of modernism’s ordinary denizens, and how this role informs their legacy today. Table of Contents [Book] Introduction Robin Schuldenfrei Part 1: Psychological Constructions: Anxiety of Isolation and Exposure 1. Taking Comfort in the Age of Anxiety: Eero Saarinen’s Womb Chair Cammie McAtee 2. The Future is Possibly Past: The Anxious Spaces of Gaetano Pesce Jane Pavitt 3. Scopophobia/Scopophilia: Electric Light and the Anxiety of the Gaze in American Postwar Domestic Architecture Margaret Petty Part 2: Ideological Objects: Design and Representation 4. The Allegory of the Socialist Lifestyle: The Czechoslovak Pavilion at the Brussels Expo, its Gold Medal and the Politburo Ana Miljacki 5. Assimilating Unease: Moholy-Nagy and the Wartime-Postwar Bauhaus in Chicago Robin Schuldenfrei 6. The Anxieties of Autonomy: Peter Eisenman from Cambridge to House VI Sean Keller Part 3: Societies of Consumers: Materialist Ideologies and Postwar Goods 7. "But a home is not a laboratory": The Anxieties of Designing for the Socialist Home in the German Democratic Republic 1950—1965 Katharina Pfützner 8. Architect-designed Interiors for a Culturally Progressive Upper-Middle Class: The Implicit Political Presence of Knoll International in Belgium Fredie Floré 9. Domestic Environment: Italian Neo-Avant-Garde Design and the Politics of Post-Materialism Mary Louise Lobsinger Part 4: Class Concerns and Conflict: Dwelling and Politics 10. Dirt and Disorder: Taste and Anxiety in the Working Class Home Christine Atha 11. Upper West Side Stories: Race, Liberalism, and Narratives of Urban Renewal in Postwar New York Jennifer Hock 12. Pawns or Prophets? Postwar Architects and Utopian Designs for Southern Italy Anne Parmly Toxey. Coda: From Homelessness to Homelessness David Crowley
Resumo:
The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.
Resumo:
Copper(I) complexes with {Cu(μ2-S)N}4 and {Cu(μ3-S)N}12 core portions of butterfly-shaped or double wheel architectures have been isolated in the reaction of Cu(I) with the Schiff base ligand C6H4(CHNC6H4S)2, aiso-abtâ, under different conditions. View the MathML source containing the tetranuclear electroneutral complex View the MathML source is formed by the reaction of CuI in acetonitrilic solution and recrystallization from DMF, whereas View the MathML source containing dodecanuclear View the MathML source wheels is accessible starting from CuBF4. Complexes 2 and 4 represent the first examples of cyclic complexes with the same overall stoichiometry but different ring sizes. The ligand induces two different coordination environments around copper(I) by switching between μ2- and μ3-sulfur bridging modes.
Resumo:
The complexes, Ba (HQS) (H2O)(4) (HQS = 8-hydroxyquinoline-5-sulfonic acid) (1) and Ag (HIQS) (H2O) (Ferron = 7-iodo-8-hydroxyquinoline-5-sulfonic acid) (2) have been synthesized and characterized by X-ray diffraction analysis and spectroscopic studies. In compound 1, Ba2+ ion has a nine-coordinate monocapped antiprismatic geometry. In compound 2, Ag+ has distorted tetrahedral coordination and Ag center dot center dot center dot I interactions generate the supramolecular architectures. The complexes have been characterized by FT-IR and UV-Visible measurements. In both the structures, the inversion-related organic ligands are stacked over one another leading to three-dimensional networks.
Resumo:
Architecture focuses on designing built environments in response to society’s needs, reflecting culture through materials and forms. The physical boundaries of the city have become blurred through the integration of digital media, connecting the physical environment with the digital. In the recent past the future was imagined as highly technological; 1982 Ridley Scott’s Blade Runner is set in 2019 and introduces a world where supersized screens inject advertisements in the cluttered urban space. Now, in 2015 screens are central to everyday life, but in a completely different way in respect to what had been imagined. Through ubiquitous computing and social media, information is abundant. Digital technologies have changed the way people relate to cities supporting discussion on multiple levels, allowing citizens to be more vocal than ever before. We question how architects can use the affordances of urban informatics to obtain and navigate useful social information to inform design. This chapter investigates different approaches to engage communities in the debate on cities, in particular it aims to capture citizens’ opinions on the use and design of public places. Physical and digital discussions have been initiated to capture citizens’ opinions on the use and design of public places. In addition to traditional consultation methods, Web 2.0 platforms, urban screens, and mobile apps are used in the context of Brisbane, Australia to explore contemporary strategies of engagement (Gray 2014).
Resumo:
In modern wireline and wireless communication systems, Viterbi decoder is one of the most compute intensive and essential elements. Each standard requires a different configuration of Viterbi decoder. Hence there is a need to design a flexible reconfigurable Viterbi decoder to support different configurations on a single platform. In this paper we present a reconfigurable Viterbi decoder which can be reconfigured for standards such as WCDMA, CDMA2000, IEEE 802.11, DAB, DVB, and GSM. Different parameters like code rate, constraint length, polynomials and truncation length can be configured to map any of the above mentioned standards. Our design provides higher throughput and scalable power consumption in various configuration of the reconfigurable Viterbi decoder. The power and throughput can also be optimized for different standards.
Resumo:
The Maitra group has explored a variety of chemistry with bile acids during the past 15 years and these experiments have covered a wide variety of chemistry - asymmetric synthesis, molecular recognition, ion receptors/sensors, dendrimers, low molecular mass organo and hydrogelators, gel-nanoparticle composites, etc. Some of what excites us in this field is highlighted in this perspective article.
Resumo:
REDEFINE is a reconfigurable SoC architecture that provides a unique platform for high performance and low power computing by exploiting the synergistic interaction between coarse grain dynamic dataflow model of computation (to expose abundant parallelism in applications) and runtime composition of efficient compute structures (on the reconfigurable computation resources). We propose and study the throttling of execution in REDEFINE to maximize the architecture efficiency. A feature specific fast hybrid (mixed level) simulation framework for early in design phase study is developed and implemented to make the huge design space exploration practical. We do performance modeling in terms of selection of important performance criteria, ranking of the explored throttling schemes and investigate effectiveness of the design space exploration using statistical hypothesis testing. We find throttling schemes which give appreciable (24.8%) overall performance gain in the architecture and 37% resource usage gain in the throttling unit simultaneously.
Resumo:
H.264 video standard achieves high quality video along with high data compression when compared to other existing video standards. H.264 uses context-based adaptive variable length coding (CAVLC) to code residual data in Baseline profile. In this paper we describe a novel architecture for CAVLC decoder including coeff-token decoder, level decoder total-zeros decoder and run-before decoder UMC library in 0.13 mu CMOS technology is used to synthesize the proposed design. The proposed design reduces chip area and improves critical path performance of CAVLC decoder in comparison with [1]. Macroblock level (including luma and chroma) pipeline processing for CAVLC is implemented with an average of 141 cycles (including pipeline buffering) per macroblock at 250MHz clock frequency. To compare our results with [1] clock frequency is constrained to 125MHz. The area required for the proposed architecture is 17586 gates, which is 22.1% improvement in comparison to [1]. We obtain a throughput of 1.73 * 10(6) macroblocks/second, which is 28% higher than that reported in [1]. The proposed design meets the processing requirement of 1080HD [5] video at 30frames/seconds.