1000 resultados para Second litters
Resumo:
This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.
Resumo:
It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.
Resumo:
Semi-implicit, second order temporal and spatial finite volume computations of the flow in a differentially heated rotating annulus are presented. For the regime considered, three cyclones and anticyclones separated by a relatively fast moving jet of fluid or "jet stream" are predicted. Two second order methods are compared with, first order spatial predictions, and experimental measurements. Velocity vector plots are used to illustrate the predicted flow structure. Computations made using second order central differences are shown to agree best with experimental measurements, and to be stable for integrations over long time periods (> 1000s). No periodic smoothing is required to prevent divergence.
Resumo:
This paper presents an achievable second-order rate region for the discrete memoryless multiple-access channel. The result is obtained using a random-coding ensemble in which each user's codebook contains codewords of a fixed composition. It is shown that this ensemble performs at least as well as i.i.d. random coding in terms of second-order asymptotics, and an example is given where a strict improvement is observed. © 2013 IEEE.
Resumo:
Spin dynamics in the first and second subbands have been examined simultaneously by time resolved Kerr rotation in a single-barrier heterostructure of a 500 nm thick GaAs absorption layer. By scanning the wavelengths of the probe and pump beams towards the short wavelength in the zero magnetic field, the spin coherent time T-2(1)* in the 1st subband E-1 decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. Meanwhile, the spin coherence time T-2(2)* in the 2nd subband E-2 remains very low at wavelengths longer than 810 nm, and then is dramatically enhanced afterwards. At 803 nm, T-2(2)* (450 ps) becomes ten times longer than T-2(1)* (50 ps). A new feature has been discovered at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T-2(1)* and T-2(2)*) and the effective g* factors (vertical bar g*(E-1)vertical bar and vertical bar g*(E-2)vertical bar) all display a sudden change, presumably due to the "resonant" spin exchange coupling between two spin opposite bands. Copyright (C) EPLA, 2008.
Resumo:
We present an experimental demonstration of the interaction between the intrinsic second- and third-order optical fields in an Al0.53Ga0.47N/GaN heterostructure. The sample was deposited by metal-organic chemical vapor deposition on (0001) sapphire. The nonlinear optical coefficients of the sample, which were measured with a Mach-Zehnder interferometer system, quadratically increase with the applied modulating voltage, indicating the existence of the third-order optical field. The third-order signal was then detected by the Z-scan method and we calculated the built-in dc field on the AlGaN/GaN interface to confirm the strong interaction between the intrinsic second- and third-order optical fields. (c) 2008 American Institute of Physics.
Resumo:
For a second-order DFB-LD, the presence of a metal contact layer can reduce I-st-order radiation. Part of the reflected power is redistributed into guided modes and results in a variation of the effective coupling coefficient kappa(eff). In this paper, we study the effect of the Au top contact's reflection on the kappa(eff) of 2(nd)-order DFB lasers. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A second-harmonic generation (SHG) is predicted for the Bogoliubov excitations in a two-component Bose-Einstein condensate. It is shown that, because the linear dispersion curve of the excitations displays two branches, the phase-matching condition for the SHG can be fulfilled if the wave vectors and frequencies of fundamental and second-harmonic waves are selected suitably from different branches. The nonlinearly coupled envelope equations for the SHG are derived by using a method of multiple scales. The explicit solutions of these envelope equations are provided and the conversion efficiency of the SHG is also discussed.
Resumo:
The mode characteristics for two coupled microdisks are investigated by the finite-difference time-domain technique. In the two coupled micodisks, mode coupling between the same order whispering-gallery modes (WGMs) results in coupled WGMs with split mode wavelengths. The numerical results show that the split mode wavelengths of the coupled first- and second-order WGMs can have a crossing point in some cases, which can induce anticrossing mode coupling between them and greatly reduce the mode Q factor of the coupled first-order WGMs. The time variation of mode field pattern shows the transformation between the coupled first- and second-order WGMs. (C) 2007 Optical Society of America
Resumo:
Nonpolar a-plane [(1120)] GaN samples have been grown on r-plane [(1102)] sapphire substrates by low-pressure metal-organic chemical-vapor deposition. The room-temperature first and second order Raman scattering spectra of nonpolar a-plane GaN have been measured in surface and edge backscattering geometries. All of the phonon modes that the selection rules allow have been observed in the first order Raman spectra. The frequencies and linewidths of the active modes have been analyzed. The second order phonon modes are composed of acoustic overtones, acoustic-optical and optical-optical combination bands, and optical overtones. The corresponding assignments of second order phonon modes have been made. (c) 2007 American Institute of Physics.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.
Resumo:
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest-host polymer films. The high second-order NLO coefficient chi(33)((2)) = 11.02 pm/v measured at 1.064 mu m was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100 degrees C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel monomer, (trans)-7-[4-N,N-(di-beta-hydroxyethyl) amino-benzene]-ethenyl-3,5-dinitrothiophene (HBDT), and the corresponding prepolymer, polyurethane were synthesized and characterized. The details of synthesis of the monomer and its further polymerization were presented. The prepolymer and polyurethane exhibited good thermal stability and good solubility in common organic solvents. The d(33) coefficient of the poled films was determined to be 40.3 pm/V. (C) 2000 Kluwer Academic Publishers.