984 resultados para Perriaux, Jaime
Resumo:
El creciente uso de software de geometría dinámica 3-dimensional plantea nuevas cuestiones a los investigadores en Educación Matemática. Para aportar información sobre el aprendizaje de geometría espacial en esta disciplina mediante entornos de geometría dinámica 3-dimensional, y sobre posibles fortalezas y debilidades de tales entornos, presentamos resultados de una investigación experimental en la que se analiza cómo un estudiante de altas capacidades matemáticas aprende conceptos relativos a paralelismo entre rectas y/o planos en el espacio mediante la resolución de actividades en un entorno de Cabri 3D.
Resumo:
En este artículo la problemática que abordamos es la que surge de la desvinculación de los contextos escolares y el entorno social, nuestra intención es investigar las prácticas de modelación que los estudiantes de nivel medio con bachillerato técnico clínico y estudiantes de nivel superior de la carrera de ingeniería bioquímica, ejercen al investigar un problema social: la contaminación del río de la sabana. Hacemos énfasis en observar cómo aprenden los estudiantes y las prácticas que ejercen al investigar una problemática social.
Resumo:
El presente trabajo tiene la intención de analizar las fases de las prácticas de modelación en la escuela y el papel de la analogía como una de ellas. Las prácticas de modelación las caracterizamos como prácticas recurrentes de diferentes comunidades que articulan dos entidades (fenómenos y sus referentes matemáticos) con la intensión de intervenir en una de ellas a partir de la otra. Esta caracterización plantea de entrada la interacción con el fenómeno, esto define a la primera fase, emergiendo la experimentación en el sentido amplio. La segunda fase, la caracterizamos como el acto de modelar, en donde se realiza la articulación por medio de alguna acción de las entidades participantes; la tercera fase es la articulación de los modelos con el fenómeno en una red. Una cuarta fase es la analogía que descentra la red de modelos del fenómeno original que le dio lugar. En esta fase se pretende la articulación de redes de modelos, dando lugar a redes de redes.
Resumo:
Este trabajo es parte de una investigación que estudia prácticas de modelación en diversos escenarios con la intención de analizar las herramientas que surgen en este proceso. Se reportan experiencias con estudiantes, de nivel medio superior y superior de México y Chile, respectivamente, que participaron en puestas en escena de un diseño de aprendizaje basado en la modelación lineal. Sus producciones muestran argumentos, herramientas y procedimientos que utilizan al modelar, su análisis presenta invariantes y particularidades que exhiben el rol del estudiante en cada escenario. El trabajo se enmarca en la socioepistemología como perspectiva teórica.
Resumo:
Este reporte es parte de una investigación en curso que estudia prácticas de simulación y las herramientas que se construyen para su ejercicio, esta se desarrolla en el marco de la socioepistemología. La simulación se entiende como prácticas recurrentes de diferentes comunidades con la intencionalidad de describir fenómenos a partir de sus modelos. En este trabajo solo abordamos la simulación de fenómenos considerando modelos lineales, para ello analizamos dos puesta en escena de un diseño de aprendizaje con estudiantes de nivel medio superior y de posgrado. Reportamos las herramientas, procesos y argumentos de los actores al simular.
Resumo:
La enseñanza de la geometría es materia de muchos estudios y aproximaciones. En trabajos considerados para este taller (Bermúdez,1996; Flores y Barrera,2002; Nolé, 2001; Siñeriz,2002; Gutiérrez y Jaime,1994), se percibe el interés de docentes e investigadores latinoamericanos en generar propuestas que permitan mejorar su enseñanza. En general, éstas parten del modelo Van Hiele, y se reportan propuestas a alumnos (Bermúdez, 1996) y profesores (Flores y Barrera, 2002) en los cuales se exploran dificultades de unos y otros para acceder a los distintos niveles de aprendizaje. Así, se propuso este taller donde el participante pudo experimentar el proceso de conjetura y demostración, para trabajar en el nivel 4 del modelo, del que se registran pocas propuestas.
Resumo:
El presente trabajo se inserta en la línea de investigación que intenta explicar las relaciones entre las prácticas sociales y la construcción social del conocimiento. Sostenemos que es en el ejercicio de las prácticas sociales donde los actores construyen herramientas que han de constituirse en su conocimiento y éstas a su vez modifican las prácticas. En este trabajo hemos elegido a las prácticas sociales de modelación y su relación con la construcción de lo exponencial como herramienta. Modelando el enfriamiento del silicón los actores construyen modelos y con ellos realizan predicciones, articulando los diferentes modelos con el fenómeno. Se hace énfasis en el análisis epistemológico y como es que lo exponencial se construye al ejercer la modelación.
Resumo:
Concebimos que la modelación de fenómenos es una práctica que está ligada a la construcción de conocimientos matemáticos y en este sentido se han realizado investigaciones entorno a su incorporación al contexto escolar. Sin embargo, el incorporar la experimentación en el aula de matemáticas conlleva dificultades, una de ellas es la carencia de material de laboratorio. El laboratorio virtual es un proyecto que intenta suplir la ausencia de un laboratorio físicamente, sin embargo, esta sustitución desencadena diferentes relaciones entre los actores. En este trabajo se pretende mostrar como es que un laboratorio simulado, podría contribuir a la incorporación a sistemas escolares concretos de diseños de aprendizaje basados en las prácticas sociales de modelación. Se da evidencia de cómo se desarrollan acciones e interacciones colaborativas alrededor del laboratorio virtual.
Resumo:
En este artículo reportamos cómo es que los actores de la puesta en escena de un diseño de aprendizaje, construyen lo multilineal, en el ejercicio de prácticas de modelación. Se toma a la modelación de un sistema de resortes como base para elaborar un diseño de aprendizaje, donde se trata a lo multilineal no como un objeto matemático, sino como herramienta creada al ejercer la modelación. En el diseño se establecen diferentes variables didácticas, por ejemplo, realizar la modelación a partir de datos “sin ruido”, “con ruido” o, considerar, la modelación del fenómeno físico. Las primeras dos variantes se realizan en papel y lápiz, mientras que en la tercera se ha trabajado con un sistema de ligas. Se ha aplicado el diseño a estudiantes de distintos niveles educativos, donde se ha mostrado que los actores consideran lo multilineal como modelos lineales disjuntos.
Resumo:
Desde nuestra perspectiva, la construcción del conocimiento está vinculada con el ejercicio de las prácticas sociales (Arrieta, 2003). Así, las herramientas trigonométricas, en particular el seno, se encuentran asociadas a las prácticas donde son utilizadas. La herramienta seno, se encuentra relacionada con diferentes prácticas, que en uno u otro contexto son prioritarias. Por ejemplo, la herramienta seno como modelo periódico se encuentra asociado a las prácticas de comunidades de ingenieros en electrónica, mientras que en otras comunidades el seno es utilizado como razón de dos lados de un triángulo rectángulo. La forma en cómo vive en contextos escolares, muestra que generalmente no es utilizada como herramienta y que aún cuando se introduce como razón trigonométrica el seno esta desligado de la práctica de hacer semejanza con triángulos.
Resumo:
La intención de la ponencia está en la dirección de presentar un estudio de las prácticas que ejercen los actores en un diseño de aprendizaje puesto en escena en el aula de matemáticas. El diseño referido se centra, no en los contenidos matemáticos en sí o en las producciones de los participantes, sino en las prácticas sociales ejercidas por los participantes utilizando herramientas y situadas en un contexto social; en este caso las prácticas sociales de modelación del enfriamiento de un líquido. Reportamos la narración de la puesta en escena en el aula de matemáticas de un diseño de aprendizaje basado en prácticas sociales de modelación de fenómenos: “Lo exponencial: la ley de enfriamiento de Newton”. Aquí narramos como los participantes construyen lo exponencial como herramienta al intentar comprender y predecir lo que sucede al enfriarse un líquido.
Resumo:
La enseñanza de las matemáticas en un contexto de inclusión escolar supone un reto para el sistema educativo en la actualidad. El iniciar a inducir contenidos formales y de un nivel de abstracción elevado en un contexto de estudiantes con necesidades educativas especiales supone un cambio en la forma que se presentas estos contenidos. El presente trabajo describe el diseño, puesta en práctica y análisis de una propuesta de enseñanza de la geometría analítica con estudiantes del grado decimo del colegio Euskadi (Colombia). Logrando analizar las implicaciones de la metodología aula taller y el papel fundamental de la geometría como mediación entre el mundo real y las matemáticas.
Resumo:
A través de la comparación de resultados obtenidos entre problemas verbales formulados con números grandes y números muy pequeños, se ofrecen perfiles característicos de estos problemas en función de la distancia, el paralelismo y el progreso de los resultados curso a curso. Del estudio comparado de estos datos se obtienen conclusiones que ayudan a una mejor acción didáctica y una más adecuada secuenciación de estos problemas.
Resumo:
Este texto es una reflexión sobre la forma en la que se pide a los estudiantes que aprendan y memoricen que ángulos son iguales cuando dos rectas paralelas son cortadas por una transversal.
Resumo:
Se estudian los caracteres palinológicos referentes a forma, tamaño, ornamentación, apertura y estructura de la exina, en las doce especies de la familia Convolvulaceae presentes en el área valenciana, las cuales se pueden separar en cuatro tipos polínicos distintos, que se correpsonden con cada uno de los cuatro géneros representados: Calystegia R. Br., Convolvulus L., Cressa L., y Cuscuta L. encontrándose diferencias dentro de cada tipo qure, en algunos casos, permiten discriminar espeices.