923 resultados para PLANE-STRAIN COMPRESSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress states in unintentionally doped GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire, and their effects on optical properties of GaN films were investigated by means of room-temperature confocal micro-Raman scattering and photoluminescence techniques. Relatively large tensile stress exists in GaN epilayers grown on Si and 6H-SiC while a small compressive stress appears in the film grown on sapphire. The latter indicates effective strain relaxation in the GaN buffer layer inserted in the GaN/sapphire sample, while the 50-nm-thick AlN buffer adopted in the GaN/Si sample remains highly strained. The analysis shows that the thermal mismatch between the epilayers and the substrates plays a major role in determining the residual strain in the films. Finally, a linear coefficient of 21.1+/-3.2 meV/GPa characterizing the relationship between the luminescent bandgap and the biaxial stress of the GaN films is obtained. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more in atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

20-period strained-layer superlattices of nominal composition and width Ge0.2Si0.8 (5 nm)/Si(25 nm) and Ge0.5Si0.5 (5 nm)/Si(25 nm) were studied by double-crystal X-ray diffraction. The Ge content x was determined by computer simulation of the diffraction features from the superlattice. This method is shown to be independent of the relaxation of the superlattice. Alternatively, x can be obtained from the measured difference DELTAa/a in lattice spacing perpendicular to the growth plane. It is sensitive to the relaxation. Comparing the results obtained in these two different ways, information about the relaxation of the superlattices can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reversibly strain-tunable polymeric photonic crystals made of thermoplastic polyester elastomer (TPEE) were fabricated by using the self-assembled silica opals as templates. The stop band of the polymeric photonic crystal locates at the near infrared (IR) regime in its transmission spectrum, and exhibits a blue shift with the increase of the incident angle. Because of the elasticity of the TPEE, the stop band of the TPEE photonic crystal can also be reversibly tuned at ambient temperature through to and fro uniaxially or biaxially stretching and recovering by changing the lattice spacing and the symmetry of the crystal along (1 1 1) plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of synthesizing stable grasps on arbitrary planar polygons. Each finger is a virtual spring whose stiffnes and compression can be programmed. The contacts between the finger tips and the object are point contacts without friction. We prove that all force-closure grasps can be made stable, and it costs 0(n) time to synthesize a set of n virtual springs such that a given force closure grasp is stable. We can also choose the compliance center and the stiffness matrix of the grasp, and so choose the compliant behavior of the grasped object about its equilibrium. The planning and execution of grasps and assembly operations become easier and less sensitive to errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined experimental and analytical study of a hat-stiffened carbon-fibre composite panel loaded in uniaxial compression was investigated. A buckling mode transition was observed in the panel's skin bay which was not captured using non-linear finite-element analysis. Good correlation between experimental and numerical strain and displacement results was achieved in the prebuckling and initial postbuckling region of the loading history. A Marguerre-type Rayleigh-Ritz energy method was applied to the skin bay using representative displacement functions of permissible mode shapes to explain the mode transition phenomenon. The central criterion of this method was based on the assumption that a change in mode shape occurred such that the total potential energy of the structure was maintained at a minimum. The ultimate strength of the panel was limited by the column buckling strength of the hat-stiffeners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain-dependent microstructural modifications were observed in epitaxial BiCrO3 (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCOSTO [BCO grown on buffered SrTiO3 (001)] and in-plane compressive strain, BCONGO [BCO grown on buffered NdGaO3 (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCOSTO, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCOSTO films with d = 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCONGO films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ~ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous poly(L-lactic acid) (PLA) scaffolds of 85 per cent and 90 per cent porosity are prepared using polymer sintering and porogen leaching method. Different weight fractions of 10 per cent, 30 per cent, and 50 per cent of hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three-dimensional (3D) morphology and surface porosity are tested using micro-computer tomography (micro-CT), optical microscopy, and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change on the addition of HA. The micro-CT examinations show a slight decrease in the pore size and increase in the wall thickness accompanied by reduced anisotropy for the scaffolds containing HA. Scanning electron micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA particles and reduced leaching of the porogen. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA results in a reduction in the modulus of the scaffold at the first stage of elastic bending of the wall, but this is reversed for the second and third stages of collapse of the wall and densification in the compression tests. In the scaffolds with 85 per cent porosity, the addition of a high percentage of HA could result in 70 per cent decrease in stiffness in the first stage, 200 per cent increase in stiffness in the second stage, and 20 per cent increase in stiffness in the third stage. The results of these tests are compared with the Gibson cellular material model that is proposed for prediction of the behaviour of cellular material under compression. The pH and molecular weight changes are tracked for the scaffolds within a period of 35 days. The addition of HA keeps the pH in the alkaline region, which results in higher rate of degradation at an early period of observation, followed by a reduced rate of degradation later in the process. The final molecular weight is higher for the scaffolds with HA than for scaffolds of pure PLA. The manufactured scaffolds offer acceptable properties in terms of the pore size range and interconnectivity of the pores and porosity for non-load-bearing bone graft substitute; however, improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds. © 2008 IMechE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor- based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro- and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetisation vs. temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment FCC layer at the seed interface topped with a higher moment HCP layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetisation was found to drop with increasing unit cell size. In-situ annealed rare earth films exceeded the saturation magnetisation of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetisation and operating temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the research of the microstructural influence on dynamic compression, an assumption that the α and the β phases in titanium alloys were linearly strengthened was proposed, and a two-dimensional model using ANSYS (ANSYS, Inc., Canonsburg, PA) focusing on the role of microgeometrical structure was developed. By comparing the stress and strain distributions of different microstructures, the roles of cracks and phase boundaries in titanium compression were studied.