769 resultados para PES
Resumo:
Relatório Final apresentado à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Ensino do 1º e do 2º Ciclo de Ensino Básico
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1º e 2º ciclo do Ensino Básico
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1º e 2º Ciclo do Ensino Básico
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º ciclo do Ensino Básico
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Ensino do 1º e do 2º Ciclos
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclo do Ensino Básico
Resumo:
Relatório Final apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.
Resumo:
Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
Demand response is an energy resource that has gained increasing importance in the context of competitive electricity markets and of smart grids. New business models and methods designed to integrate demand response in electricity markets and of smart grids have been published, reporting the need of additional work in this field. In order to adequately remunerate the participation of the consumers in demand response programs, improved consumers’ performance evaluation methods are needed. The methodology proposed in the present paper determines the characterization of the baseline approach that better fits the consumer historic consumption, in order to determine the expected consumption in absent of participation in a demand response event and then determine the actual consumption reduction. The defined baseline can then be used to better determine the remuneration of the consumer. The paper includes a case study with real data to illustrate the application of the proposed methodology.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.