958 resultados para Numerical results
Resumo:
In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper an exact three-dimensional analysis for free vibrations of a class of simply-supported viscoelastic rectangular plates is given. The characteristic equation defining the eigenvalues is of closed form. Some numerical results are presented for standard linear solids. Results from thin plate and Mindlin theories are also given for the purpose of comparison.
Resumo:
The probability that a random process crosses an arbitrary level for the first time is expressed as a Gram—Charlier series, the leading term of which is the Poisson approximation. The coefficients of this series are related to the moments of the number of level crossings. The results are applicable to both stationary and non-stationary processes. Some numerical results are presented for the response process of a linear single-degree-of-freedom oscillator under Gaussian white noise excitation.
Resumo:
We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.
Resumo:
Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r
Resumo:
A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Estimates of natural frequencies corresponding to axisymmetric modes of flexural vibration of polar orthotropic annular plates have been obtained for various combinations of clamped, simply supported and free edge conditions. A coordinate transformation in the radial direction has been used to obtain effective solutions by the classical Rayleigh-Ritz method. The analysis with this transformation has been found to be advantageous in computations, particularly for large hole sizes, over direct analysis. Numerical results have been obtained for various values of hole sizes and rigidity ratio. The eigenvalue parameter has been found to vary more or less linearly with the rigidity ratio. A comparison with the results for isotropic plates has brought out some interesting features.
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.
Resumo:
The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.
Resumo:
The Upwind-Least Squares Finite Difference (LSFD-U) scheme has been successfully applied for inviscid flow computations. In the present work, we extend the procedure for computing viscous flows. Different ways of discretizing the viscous fluxes are analysed for the positivity, which determines the robustness of the solution procedure. The scheme which is found to be more positive is employed for viscous flux computation. The numerical results for validating the procedure are presented.
Resumo:
We have presented a new low dissipative kinetic scheme based on a modified Courant Splitting of the molecular velocity through a parameter φ. Conditions for the split fluxes derived based on equilibrium determine φ for a one point shock. It turns out that φ is a function of the Left and Right states to the shock and that these states should satisfy the Rankine-Hugoniot Jump condition. Hence φ is utilized in regions where the gradients are sufficiently high, and is switched to unity in smooth regions. Numerical results confirm a discrete shock structure with a single interior point when the shock is aligned with the grid.
Resumo:
Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.
Resumo:
Adhesive forces between two approaching asperities will deform the asperities, and under certain conditions this will result in a sudden runaway deformations leading to a jump-to-contact instability. We present finite element-based numerical studies on adhesion-induced deformation and instability in asperities. We consider the adhesive force acting on an asperity, when it is brought near a rigid half-space, due to van der Waals interaction between the asperity and the half-space. The adhesive force is considered to be distributed over the volume of the asperity (body force), thus resulting in more realistic simulations for the length scales considered. Iteration scheme based on a ``residual stress update'' algorithm is used to capture the effect of deformation on the adhesion force, and thereby the equilibrium configuration and the corresponding force. The numerical results are compared with the previous approximate analytical solutions for adhesion force, deformation of the asperity and adhesion-induced mechanical instability (jump-to-contact). It is observed that the instability can occur at separations much higher,and could possibly explain the higher value of instability separation observed in experiments. The stresses in asperities, particularly in case of small ones, are found to be high enough to cause yielding before jump -to-contact. The effect of roughness is considered by modeling a spherical protrusion on the hemispherical asperity.This small-scale roughness at the tip of the asperities is found to control the deformation behavior at small separations, and hence are important in determining the friction and wear due to the jump-to-contact instability.
Resumo:
Partition of unity methods, such as the extended finite element method, allows discontinuities to be simulated independently of the mesh (Int. J. Numer. Meth. Engng. 1999; 45:601-620). This eliminates the need for the mesh to be aligned with the discontinuity or cumbersome re-meshing, as the discontinuity evolves. However, to compute the stiffness matrix of the elements intersected by the discontinuity, a subdivision of the elements into quadrature subcells aligned with the discontinuity is commonly adopted. In this paper, we use a simple integration technique, proposed for polygonal domains (Int. J. Nuttier Meth. Engng 2009; 80(1):103-134. DOI: 10.1002/nme.2589) to suppress the need for element subdivision. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics and a multi-material problem show that the proposed method yields accurate results. Owing to its simplicity, the proposed integration technique can be easily integrated in any existing code. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the ground states into sectors specified by the number of "strings." We show that the effect of the staggered field is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling constant J becoming infinitely large, we prove the existence of a phase transition in this system and obtain a finite lower bound for the transition temperature. For finite J, we study the equilibrium properties of the system using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration times for low-field values increase rapidly with system size at low temperatures. Due to this difficulty in equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical results does not permit a definite conclusion about the existence of st phase transition for finite values of J. A surprising feature in the system is the fact that unlike usual glassy systems; a zero-temperature quench almost always leads to the ground state, while a slow cooling does not.