935 resultados para Neuropathy - Experimental studies
Resumo:
Continuous slurry reactor runs of two to four weeks duration were carried out for catalyzed air oxidation of thiosalts under a variety of conditions using poly (4-vinylpyridine) - Cu (II) and quaternized poly (4-vinylpyridine) - Cu (II) catalysts. Results obtained indicate that these catalysts have high activity and relatively long-term catalyst stability for thiosalt waste streams of < 1000 ppm thiosalt level. Using 2% (w/w) slurries of the poly (4-vinylpyridine) Cu (II) catalyst, effective oxidation of 700 ppm S2O32− influent to an effluent of < 100 ppm total thio-salts can be carried out continuously for at least one month when operating at 20 to 30°C with solution flow rates of$˜1l/h and aeration of 1300 XXX/h using a two-stage reactor system comprised of 12 l reactors. At higher thiosalt influent levels (i.e. > 1600 ppm) increased reaction temperatures enable depletion to < 100 ppm thiosalt effluent levels for up to one week of continuous operation. The catalysts deactivate much more readily at these higher influent levels as a result of greater copper losses and appreciable adsorption of S2O32− and S4O62−. The behaviour of continuous slurry reactors employed in the experimental studies, by use of batch reaction data for the poly (4-vinylpyridine) Cu (II) catalyzed oxidation of thiosalts, can be modelled successfully. Quaternized poly (4-vinylpyridine) Cu (II) catalyst has good long-term stability and copper losses are very low. The poly (4-vinylpyridine) Cu (II) catalyst, however, is susceptible to appreciable oxidation of the polymer matrix on long-term usage. This oxidation of the polymer matrix results in a substantial loss in the activity of the regenerated catalyst.
Resumo:
The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.
Resumo:
Habitat fragmentation is currently affecting many species throughout the world. As a consequence, an increasing number of species are structured as metapopulations, i.e. as local populations connected by dispersal. While excellent studies of metapopulations have accumulated over the past 20 years, the focus has recently shifted from single species to studies of multiple species. This has created the concept of metacommunities, where local communities are connected by the dispersal of one or several of their member species. To understand this higher level of organisation, we need to address not only the properties of single species, but also establish the importance of interspecific interactions. However, studies of metacommunities are so far heavily biased towards laboratory-based systems, and empirical data from natural systems are urgently needed. My thesis focuses on a metacommunity of insect herbivores on the pedunculate oak Quercus robur a tree species known for its high diversity of host-specific insects. Taking advantage of the amenability of this system to both observational and experimental studies, I quantify and compare the importance of local and regional factors in structuring herbivore communities. Most importantly, I contrast the impact of direct and indirect competition, host plant genotype and local adaptation (i.e. local factors) to that of regional processes (as reflected by the spatial context of the local community). As a key approach, I use general theory to generate testable hypotheses, controlled experiments to establish causal relations, and observational data to validate the role played by the pinpointed processes in nature. As the central outcome of my thesis, I am able to relegate local forces to a secondary role in structuring oak-based insect communities. While controlled experiments show that direct competition does occur among both conspecifics and heterospecifics, that indirect interactions can be mediated by both the host plant and the parasitoids, and that host plant genotype may affect local adaptation, the size of these effects is much smaller than that of spatial context. Hence, I conclude that dispersal between habitat patches plays a prime role in structuring the insect community, and that the distribution and abundance of the target species can only be understood in a spatial framework. By extension, I suggest that the majority of herbivore communities are dependent on the spatial structure of their landscape and urge fellow ecologists working on other herbivore systems to either support or refute my generalization.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
Eutrophication and enhanced internal nutrient loading of the Baltic Sea are most clearly reflected by increased late-summer cyanobacterial blooms, which often are toxic. In addition to their toxicity to animals, phytoplankton species can be allelopathic, which means that they produce chemicals that inhibit competing phytoplankton species. Such interspecific chemical warfare may lead to the formation of harmful phytoplankton blooms and the spread of exotic species into new habitats. This is the first report on allelopathic effects in brackish-water cyanobacteria. The experimental studies presented in this thesis showed that the filamentous cyanobacteria Anabaena sp., Aphanizomenon flos-aquae and Nodularia spumigena are capable of decreasing the growth of other phytoplankton species, especially cryptophytes, but also diatoms. The detected allelopathic effects are rather transitory, and some co-occurring species show tolerance to them. The allelochemicals are excreted during active growth and they decrease cell numbers, chlorophyll a content and carbon uptake of the target species. Although the more specific modes of action or chemical structures of the allelochemicals remain to be studied, the results clearly indicate that the allelopathic effects are not caused by the hepatotoxin, nodularin. On the other hand, cyanobacteria stimulated the growth of bacteria, other cyanobacteria, chlorophytes and flagellates in a natural phytoplankton community. In a long-term data analysis of phytoplankton abundances and hydrography of the northern Baltic Sea, a clear change was observed in phytoplankton community structure, together with a transition in environmental factors, between the late 1970s and early 2000s. Surface water salinity decreased, whereas water temperature and the concentration of dissolved inorganic nitrogen increased. In the phytoplankton community, the biomass of cyanobacteria, chrysophytes and chlorophytes significantly increased, and the late-summer phytoplankton community became increasingly cyanobacteria-dominated. In contrast, the biomass of cryptophytes decreased. The increased temperature and nutrient concentrations probably explain most of the changes in phytoplankton, but my results suggest that the possible effect of chemically mediated biological interactions should also be considered. Cyanobacterial allelochemicals can cause additional stress to other phytoplankton in the nutrient-depleted late-summer environment and thus contribute to the formation and persistence of long-lasting cyanobacterial mass occurrences. On the other hand, cyanobacterial blooms may either directly or indirectly promote the growth of some phytoplankton species. Therefore, a further increase in cyanobacteria will probably shape the late-summer pelagic phytoplankton community by stimulating some species, but inhibiting others.
Resumo:
Purpose: A computationally efficient algorithm (linear iterative type) based on singular value decomposition (SVD) of the Jacobian has been developed that can be used in rapid dynamic near-infrared (NIR) diffuse optical tomography. Methods: Numerical and experimental studies have been conducted to prove the computational efficacy of this SVD-based algorithm over conventional optical image reconstruction algorithms. Results: These studies indicate that the performance of linear iterative algorithms in terms of contrast recovery (quantitation of optical images) is better compared to nonlinear iterative (conventional) algorithms, provided the initial guess is close to the actual solution. The nonlinear algorithms can provide better quality images compared to the linear iterative type algorithms. Moreover, the analytical and numerical equivalence of the SVD-based algorithm to linear iterative algorithms was also established as a part of this work. It is also demonstrated that the SVD-based image reconstruction typically requires O(NN2) operations per iteration, as contrasted with linear and nonlinear iterative methods that, respectively, requir O(NN3) and O(NN6) operations, with ``NN'' being the number of unknown parameters in the optical image reconstruction procedure. Conclusions: This SVD-based computationally efficient algorithm can make the integration of image reconstruction procedure with the data acquisition feasible, in turn making the rapid dynamic NIR tomography viable in the clinic to continuously monitor hemodynamic changes in the tissue pathophysiology.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies.
Resumo:
The dynamics of loop formation by linear polymer chains has been a topic of several theoretical and experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study [K. P. Santo and K. L. Sebastian, Phys. Rev. E 73, 031923 (2006)], we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We make use of the ``closure approximation'' of Wilemski and Fixman [G. Wilemski and M. Fixman, J. Chem. Phys. 60, 878 (1974)], in which a sink function is used to represent the reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain. We show that for short chains, the loop formation time tau decreases with the contour length of the polymer. But for longer chains, it increases with length obeying a power law and so it has a minimum at an intermediate length. In terms of dimensionless variables, the closing time is found to be given by tau similar to L-n exp(const/L), where n=4.5-6. The minimum loop formation time occurs at a length L-m of about 2.2-2.4. These are, indeed, the results that are physically expected, but a multidimensional analysis leading to these results does not seem to exist in the literature so far.
Resumo:
Intermittent microwave convective (IMCD) drying is an advanced drying technology that improves both energy efficiency and food quality during the drying of food materials. Despite numerous experimental studies available for IMCD, there is no complete multiphase porous media model available to describe the process. A multiphase porous media model considering liquid water, gases and the solid matrix inside the food during drying can provide in depth understanding of IMCD. In this article, firstly a multiphase porous media model was developed for IMCD. Then the model is validated against experimental data by comparing moisture content and temperature distributions after each heating and tempering periods. The profile of vapour pressures and evaporation during IMCD are presented and discussed. The relative contribution of water and vapour fluxes due to gas pressure and diffusion demonstrated that the fluxes due are relatively higher in IMCD compared to convection drying and this makes the IMCD faster.
Resumo:
Solving large-scale all-to-all comparison problems using distributed computing is increasingly significant for various applications. Previous efforts to implement distributed all-to-all comparison frameworks have treated the two phases of data distribution and comparison task scheduling separately. This leads to high storage demands as well as poor data locality for the comparison tasks, thus creating a need to redistribute the data at runtime. Furthermore, most previous methods have been developed for homogeneous computing environments, so their overall performance is degraded even further when they are used in heterogeneous distributed systems. To tackle these challenges, this paper presents a data-aware task scheduling approach for solving all-to-all comparison problems in heterogeneous distributed systems. The approach formulates the requirements for data distribution and comparison task scheduling simultaneously as a constrained optimization problem. Then, metaheuristic data pre-scheduling and dynamic task scheduling strategies are developed along with an algorithmic implementation to solve the problem. The approach provides perfect data locality for all comparison tasks, avoiding rearrangement of data at runtime. It achieves load balancing among heterogeneous computing nodes, thus enhancing the overall computation time. It also reduces data storage requirements across the network. The effectiveness of the approach is demonstrated through experimental studies.
Resumo:
Epidemiological and experimental studies suggest that changes in gut microbial balance are associated with increases in the prevalence of allergic diseases. Probiotics are proposed to provide beneficial immunoregulatory signals which aid in oral tolerance achievement and alleviation of symptoms of allergic diseases. The present study evaluates both the immunological mechanisms of probiotics in infants with allergic diseases and their preventive aspect among infants prone to allergy. Furthermore, the purpose of the study was to characterise the immunological features of cord blood mononuclear cells (CBMCs) in infants at high genetic risk for allergy. GATA-3 expression (p = 0.03), interleukin (IL) -2(p = 0.026), and IL-5 (p = 0.013) secretion of stimulated CBMCs were higher in IgE-sensitized infants at age 2 than in non-allergic, non-sensitized infants. Lactobacillus GG (LGG) treatment increased secretion of IFN-γ by PBMCs in vitro in infants with cow s milk allergy (CMA) (p = 0.006) and in infants with IgE-associated eczema (p = 0.017), when compared to levels in the placebo group. A probiotic mixture, increased secretion of IL-4 by PBMCs in vitro in infants with CMA (p = 0.028), when compared with placebo-group levels. The LGG treatment induced higher plasma C-reactive protein (CRP) (p = 0.021) and IL-6 (p = 0.036) levels in infants with IgE-associated eczema than in the placebo group. The probiotic mixture induced higher plasma IL-10 levels in infants with eczema (p = 0.016). In the prevention study of allergic dis-eases, the infants receiving the probiotic mixture had higher plasma levels of CRP (p = 0.008), total IgA (p = 0.016), total IgE (p = 0.047), and IL-10 (p = 0.002) than did infants in the placebo group. Increased CRP level at age 6 months was associated with a decreased risk for eczema at age 2 not only in the infants who received probiotics but also in the placebo group (p = 0.034). In conclusion, the priming of the GATA-3 and IL-5 pathway can occur in utero, and a primary feature of T-cells predisposing to IgE-sensitization seems to directly favour Th2 deviation. LGG treatment induced increased plasma levels of CRP and IL-6 in infants with IgE-associated eczema, suggesting an activation of innate immu-nity. The probiotic mixture, when given to allergy-prone infants, induced inflammation, detected as increased plasma CRP levels, which at age 6 months was associated with decreased risk for eczema at age 2.The probiotic-induced response in allergy prone infants was characterized by their higher plasma IL-10, total IgE, and CRP levels, without induction of an allergen-specific IgE response. In this respect, the probiotics in infancy appear to induce protective immune profiles that are characteristic for chronic low-grade inflammation, a response resembling that of helminth-like infections.
Resumo:
WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.
Resumo:
Changes in alcohol pricing have been documented as inversely associated with changes in consumption and alcohol-related problems. Evidence of the association between price changes and health problems is nevertheless patchy and is based to a large extent on cross-sectional state-level data, or time series of such cross-sectional analyses. Natural experimental studies have been called for. There was a substantial reduction in the price of alcohol in Finland in 2004 due to a reduction in alcohol taxes of one third, on average, and the abolition of duty-free allowances for travellers from the EU. These changes in the Finnish alcohol policy could be considered a natural experiment, which offered a good opportunity to study what happens with regard to alcohol-related problems when prices go down. The present study investigated the effects of this reduction in alcohol prices on (1) alcohol-related and all-cause mortality, and mortality due to cardiovascular diseases, (2) alcohol-related morbidity in terms of hospitalisation, (3) socioeconomic differentials in alcohol-related mortality, and (4) small-area differences in interpersonal violence in the Helsinki Metropolitan area. Differential trends in alcohol-related mortality prior to the price reduction were also analysed. A variety of population-based register data was used in the study. Time-series intervention analysis modelling was applied to monthly aggregations of deaths and hospitalisation for the period 1996-2006. These and other mortality analyses were carried out for men and women aged 15 years and over. Socioeconomic differentials in alcohol-related mortality were assessed on a before/after basis, mortality being followed up in 2001-2003 (before the price reduction) and 2004-2005 (after). Alcohol-related mortality was defined in all the studies on mortality on the basis of information on both underlying and contributory causes of death. Hospitalisation related to alcohol meant that there was a reference to alcohol in the primary diagnosis. Data on interpersonal violence was gathered from 86 administrative small-areas in the Helsinki Metropolitan area and was also assessed on a before/after basis followed up in 2002-2003 and 2004-2005. The statistical methods employed to analyse these data sets included time-series analysis, and Poisson and linear regression. The results of the study indicate that alcohol-related deaths increased substantially among men aged 40-69 years and among women aged 50-69 after the price reduction when trends and seasonal variation were taken into account. The increase was mainly attributable to chronic causes, particularly liver diseases. Mortality due to cardiovascular diseases and all-cause mortality, on the other hand, decreased considerably among the-over-69-year-olds. The increase in alcohol-related mortality in absolute terms among the 30-59-year-olds was largest among the unemployed and early-age pensioners, and those with a low level of education, social class or income. The relative differences in change between the education and social class subgroups were small. The employed and those under the age of 35 did not suffer from increased alcohol-related mortality in the two years following the price reduction. The gap between the age and education groups, which was substantial in the 1980s, thus further broadened. With regard to alcohol-related hospitalisation, there was an increase in both chronic and acute causes among men under the age of 70, and among women in the 50-69-year age group when trends and seasonal variation were taken into account. Alcohol dependence and other alcohol-related mental and behavioural disorders were the largest category in both the total number of chronic hospitalisation and in the increase. There was no increase in the rate of interpersonal violence in the Helsinki Metropolitan area, and even a decrease in domestic violence. There was a significant relationship between the measures of social disadvantage on the area level and interpersonal violence, although the differences in the effects of the price reduction between the different areas were small. The findings of the present study suggest that that a reduction in alcohol prices may lead to a substantial increase in alcohol-related mortality and morbidity. However, large population group differences were observed regarding responsiveness to the price changes. In particular, the less privileged, such as the unemployed, were most sensitive. In contrast, at least in the Finnish context, the younger generations and the employed do not appear to be adversely affected, and those in the older age groups may even benefit from cheaper alcohol in terms of decreased rates of CVD mortality. The results also suggest that reductions in alcohol prices do not necessarily affect interpersonal violence. The population group differences in the effects of the price changes on alcohol-related harm should be acknowledged, and therefore the policy actions should focus on the population subgroups that are primarily responsive to the price reduction.
Resumo:
This thesis describes current and past n-in-one methods and presents three early experimental studies using mass spectrometry and the triple quadrupole instrument on the application of n-in-one in drug discovery. N-in-one strategy pools and mix samples in drug discovery prior to measurement or analysis. This allows the most promising compounds to be rapidly identified and then analysed. Nowadays properties of drugs are characterised earlier and in parallel with pharmacological efficacy. Studies presented here use in vitro methods as caco-2 cells and immobilized artificial membrane chromatography for drug absorption and lipophilicity measurements. The high sensitivity and selectivity of liquid chromatography mass spectrometry are especially important for new analytical methods using n-in-one. In the first study, the fragmentation patterns of ten nitrophenoxy benzoate compounds, serial homology, were characterised and the presence of the compounds was determined in a combinatorial library. The influence of one or two nitro substituents and the alkyl chain length of methyl to pentyl on collision-induced fragmentation was studied, and interesting structurefragmentation relationships were detected. Two nitro group compounds increased fragmentation compared to one nitro group, whereas less fragmentation was noted in molecules with a longer alkyl chain. The most abundant product ions were nitrophenoxy ions, which were also tested in the precursor ion screening of the combinatorial library. In the second study, the immobilized artificial membrane chromatographic method was transferred from ultraviolet detection to mass spectrometric analysis and a new method was developed. Mass spectra were scanned and the chromatographic retention of compounds was analysed using extract ion chromatograms. When changing detectors and buffers and including n-in-one in the method, the results showed good correlation. Finally, the results demonstrated that mass spectrometric detection with gradient elution can provide a rapid and convenient n-in-one method for ranking the lipophilic properties of several structurally diverse compounds simultaneously. In the final study, a new method was developed for caco-2 samples. Compounds were separated by liquid chromatography and quantified by selected reaction monitoring using mass spectrometry. This method was used for caco-2 samples, where absorption of ten chemically and physiologically different compounds was screened using both single and nin- one approaches. These three studies used mass spectrometry for compound identification, method transfer and quantitation in the area of mixture analysis. Different mass spectrometric scanning modes for the triple quadrupole instrument were used in each method. Early drug discovery with n-in-one is area where mass spectrometric analysis, its possibilities and proper use, is especially important.