634 resultados para MISFIT DISLOCATIONS
Resumo:
GaN films grown on sapphire substrate with an emphasis on epitaxial lateral overgrown (ELOG) layers with an array of rhombic shaped mask area as well as InGaN/GaN MQW laser diode layer structures were investigated by cathodoluminescence (CL) spectroscopy and CL imaging at room and low temperatures. The microscopic imaging with a high-spatial resolution clearly reveals the distribution of threading dislocations and point defects in ELOG GaN films. The secondary electron and CL data measured on cleaved faces of laser diodes are analyzed in consideration with luminescence mechanisms in semiconductor heterostructures and around the p - n junction, providing important information on the defects and carrier dynamics in laser diode devices.
Resumo:
Si-doped ZnO can be synthesized on the surface of the early grown Zn2SiO4 nanostructures and form core/ shell coaxial heterostructure nanobelts with an epitaxial orientation relationship. A parallel interface with a periodicity array of edge dislocations and an inclined interface without dislocations can be formed. The visible green emission is predominant in PL spectra due to carrier localization by high density of deep traps from complexes of impurities and defects. Due to band tail localization induced by composition and defect fluctuation, and high density of free-carriers donated by doping, especially the further dissociation of excitons into free-carriers at high excitation intensity, the near-band-edge emission is dominated by the transition of free-electrons to free-holes, and furthermore, exhibits a significant excitation power-dependent red-shift characteristic. Due to the structure relaxation and the thermalization effects, carrier delocalization takes place in deep traps with increasing excitation density. As a result, the green emission passes through a maximum at 0.25I(0) excitation intensity, and the ratio of the violet to green emission increases monotonously as the excitation laser power density increases. The violet and green emission of ZnO nanostructures can be well tuned by a moderate doping and a variation in the excitation density.
Resumo:
In a recent letter, Hsieh reported the growth of high-quality Ge epilayers with a SiGe buffer thickness of only 0.45 mu m, a surface root-mean-square roughness of less than 0.4 nm, and a threading dislocation of 7.6 x 10(6) cm(-2) on Si+ pre-ion-implantation Si substrate utilizing of strain relaxation enhancement by point defects and interface blocking of the dislocations. Our comment has focused on x-ray diffraction data shown in Fig. 3 of Ref. 1. We demonstrate that the strain in Ge epilayers is tensile, rather than compressive as misunderstood by the authors. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3003873]
Resumo:
This paper presents a study of the transformation of high-temperature AlN (HT-AlN) interlayer (IL) and its effect on the strain relaxation of Al0.25Ga0.75N/HT-AlN/GaN. The HT-AlN IL capped with Al0.25Ga0.75N transforms into AlGaN IL in which the Al composition increases with the HT-AlN IL thickness while the total Ga content keeps nearly constant. During the HT-AlN IL growth on GaN, the tensile stress is relieved through the formation of V trenches. The filling up of the V trenches by the subsequent Al0.25Ga0.75N growth is identified as the Ga source for the IL transformation, whose effect is very different from a direct growth of HT-AlGaN IL. The a-type dislocations generated during the advancement of V trenches and their filling up propagate into the Al0.25Ga0.75N overlayer. The a-type dislocation density increases dramatically with the IL thickness, which greatly enhances the strain relaxation of Al0.25Ga0.75N. (c) 2008 American Institute of Physics.
Resumo:
This work presents a study of the correlation between the electrical properties and the structural defects in nominally undoped InN films. It is found that the density of edge-type threading dislocations (TDs) considerably affects the electron concentration and mobility in InN films. The Hall-effect measured electron concentration increases, while the Hall mobility decreases with the increase in the edge-type TD density. With the combination of secondary ion mass spectrometry and positron annihilation analysis, we suggest that donor-type point defects at the edge-type TD lines may serve as dominant donors in InN films and affect the carrier mobility.
Resumo:
It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.
Resumo:
Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.
Resumo:
A close relationship is found between the blue and yellow luminescence bands in n-type GaN films, which are grown without intentional acceptor doping. The intensity ratio of blue luminescence to yellow luminescence (I-BL/I-YL) decreases with the increase in edge dislocation densities as demonstrated by the (102) full width at half maximum of x-ray diffraction. In addition, the I-BL/I-YL ratio decreases with the increase in Si doping. It is suggested that the edge dislocation and Si impurity play important roles in linking the blue and yellow luminescence.
Resumo:
From a single process, GaN layers were laterally overgrown on maskless stripe-patterned (111) silicon-on-insulator (SOI) substrates by metalorganic chemical vapor deposition. The influence of stress on the behavior of dislocations at the coalescence during growth was observed using transmission electron microscopy (TEM). Improvement of the crystallin equality of the GaN layer was demonstrated by TEM and micro-Raman spectroscopy. Furthermore, the benefits of SOI substrates for GaN growth are also discussed.
Resumo:
InN thin films with different thicknesses are grown by metal organic chemical vapor deposition, and the dislocations, electrical and optical properties are investigated. Based on the model of mosaic crystal, by means of X-ray diffraction skew geometry scan, the edge dislocation densities of 4.2 x 10(10) cm(-2) and 6.3 x 10(10) cm(-2) are fitted, and the decrease of twist angle and dislocation density in thicker films are observed. The carrier concentrations of 9 x 10(18) cm(-3) and 1.2 x 10(18) cm(-3) are obtained by room temperature Hall effect measurement. V-N is shown to be the origin of background carriers, and the dependence of concentration and mobility on film thickness is explained. By the analysis of S-shape temperature dependence of photoluminescence peak, the defects induced carrier localization is suggested be involved in the photoluminescence. Taking both the localization and energy band shrinkage effect into account, the localization energies of 5.05 meV and 5.58 meV for samples of different thicknesses are calculated, and the decrease of the carrier localization effect in the thicker sample can be attributed to the reduction of defects.
Resumo:
InAs/GaSb superlattice (SL) short wavelength infrared photoconduction detectors are grown by molecular beam epitaxy on GaAs(001) semi-insulating substrates. An interfacial misfit mode AlSb quantum dot layer and a thick GaSb layer are grown as buffer layers. The detectors containing a 200-period 2ML/8ML InAs/GaSb SL active layer are fabricated with a pixel area of 800 x 800 mu m(2) without using passivation or antireflection coatings. Corresponding to the 50% cutoff wavelengths of 2.05 mu m at 77K and 2.25 mu m at 300 K, the peak detectivities of the detectors are 4 x 10(9) cm.Hz(1/2)/W at 77K and 2 x 10(8) cm.Hz(1/2)/W at 300 K, respectively.
Resumo:
Type II superlattices (SLs) short period InAs(4ML)/GaSb(8ML) were grown by molecular-beam epitaxy on lattice-mismatched GaAs substrates and on GaSb substrates. A smooth GaSb epilayer was formed on GaAs substrates by inserting mulit-buffer layers including an interfacial misfit mode AlSb quantum dot layer and AlSb/GaSb superlattices smooth layer. SLs grown on GaAs substrates (GaAs-based SLs) showed well-resolved satellite peaks in XRD. GaSb-based SLs with better structural quality and smoother surface showed strong photoluminescence at 2.55 mu m with a full width at half maximum (FWHM) of 20 meV, narrower than 31 meV of GaAs-based SLs. Inferior optical absorption of GaAs-based SL was observed in the range of 2-3 mu m. Photoresponse of GaSb-based SLs showed the cut-off wavelength at 2.6 mu m.
Resumo:
A GaN film with a thickness of 250 mu m was grown on a GaN/sapphire template in a vertical hydride vapor phase epitaxy (HVPE) reactor. The full-width at half-maximum (FWHM) values of the film were 141 and 498 arcsec for the (0 0 2) and (1 0 2) reflections, respectively. A sharp band-edge emission with a FWHM of 20 meV at 50 K was observed, which corresponded to good crystalline quality of the film. Some almost circular-shaped hillocks located in the spiral growth center were found on the film surface with dimensions of 100 mu m, whose origin was related to screw dislocations and micropipes. Meanwhile, large hexagonal pits also appeared on the film surface, which had six triangular {1 0 (1) over bar 1} facets. The strong emission in the pits was dominated by an impurity-related emission at 377 nm, which could have been a high-concentration oxygen impurity. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The defect evolution and its correlation with electrical properties of GaN films grown by metalorganic chemical vapor deposition are investigated. It is found that the dislocation density decreases gradually during the growth process, and the dislocation reduction rate in the island coalescence process is especially rapid. The changes in electron mobility of GaN with the increase of growth time are mainly dependent on the dislocations acting as scattering centers. Furthermore, the variation of carrier concentration in GaN may be related with the point defects and their clusters. The quality of GaN could be improved by suitably increasing the film thickness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural proper-ties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.