966 resultados para LASER-INDUCED CRYSTALLIZATION
Resumo:
We report a method for the selective introduction of fluorescent Ag nanoclusters in glass. Extinction and photoluminescence spectra show that a fraction of the Ag atoms are generated through femtosecond laser induced multiphoton reduction and then aggregate to form Ag nanoclusters after heat treatment. Red luminescence from the irradiated region is observed under blue or green laser excitation. The fluorescence can be attributed to interband transitions within Ag nanoclusters. This method provides a novel route to fabricate fluorescent nanomaterials in 3D transparent materials. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report femtosecond laser induced valence state and refractive index change in transparent Sin(3+)-doped fluoroaluminate glass. The effect of annealing on the induced changes was studied and the thermal stability of these changes was discussed. The results show that the femtosecond laser induced valence state change is more stable than the induced refractive index change. The observed phenomenon could be applied to design the thermally erasable or stable storage medium. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Isothermal crystallization kinetics in the melting of poly(ethylene oxide) (PEO) were investigated as a function of the shear rate and crystallization temperature by optical microscopy. The radial growth rates of the spherulites are described by a kinetics equation including shearing and relaxation combined effects and the free energy for the formation of a secondary crystal nucleus. The free-energy difference between the liquid and crystalline phases increased slightly with rising shearing rates. The experimental findings showed that the influence of the relaxation of PEO, which is related to the shear-induced orientation and stretch in a PEO melt, on the rate of crystallization predominated over the influence of the shearing. This indicated that the relaxation of PEO should be more important so that the growth rates increase with shearing, but it was nearly independent of the shear rate within the measured experimental range.
Resumo:
We have carried out optical Thomson scattering measurements from a laser induced breakdown in He at 1 atmosphere. The breakdown was created with a Nd:YAG laser with 9ns pulse duration and 400mJ pulse energy focused into a chamber filled with He. A second harmonic Nd: YAG laser with 9ns pulses and up to 80mJ energy was used to obtain temporally and spatially resolved data on the electron density and temperature. In parallel experiments, we measured the emission of the 447.1nm line from He I. Initial results suggest good agreement between densities inferred but full Abel inversion is needed for conclusive results.
Resumo:
In this paper we consider a three-dimensional heat diffusion model to explain the growth of oxide films which takes place when a laser beam is shined on and heats a metallic layer deposited on a glass substrate in a normal atmospheric environment. In particular, we apply this model to the experimental results obtained for the dependence of the oxide layer thickness on the laser density power for growth of TiO2 films grown on Ti-covered glass slides. We show that there is a very good agreement between the experimental results and the theoretical predictions from our proposed three-dimensional model, improving the results obtained with the one-dimensional heat diffusion model previously reported. Our theoretical results also show the occurrence of surface cooling between consecutive laser pulses, and that the oxide track surface profile closely follows the spatial laser profile indicating that heat diffusive effects can be neglected in the growth of oxide films by laser heating. © 2001 Elsevier Science B.V.
Resumo:
Calcium fluoride (CaF2) is one of the key lens materials in deep-ultraviolet microlithography because of its transparency at 193 nm and its nearly perfect optical isotropy. Its physical and chemical properties make it applicable for lens fabrication. The key feature of CaF2 is its extreme laser stability. rnAfter exposing CaF2 to 193 nm laser irradiation at high fluences, a loss in optical performance is observed, which is related to radiation-induced defect structures in the material. The initial rapid damage process is well understood as the formation of radiation-induced point defects, however, after a long irradiation time of up to 2 months, permanent damage of the crystals is observed. Based on experimental results, these permanent radiation-induced defect structures are identified as metallic Ca colloids.rnThe properties of point defects in CaF2 and their stabilization in the crystal bulk are calculated with density functional theory (DFT). Because the stabilization of the point defects and the formation of metallic Ca colloids are diffusion-driven processes, the diffusion coefficients for the vacancy (F center) and the interstitial (H center) in CaF2 are determined with the nudged elastic band method. The optical properties of Ca colloids in CaF2 are obtained from Mie-theory, and their formation energy is determined.rnBased on experimental observations and the theoretical description of radiation-induced point defects and defect structures, a diffusion-based model for laser-induced material damage in CaF2 is proposed, which also includes a mechanism for annealing of laser damage. rn
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.
Resumo:
This thesis contains five experimental spectroscopic studies that probe the vibration-rotation energy level structure of acetylene and some of its isotopologues. The emphasis is on the development of laser spectroscopic methods for high-resolution molecular spectroscopy. Three of the experiments use cavity ringdown spectroscopy. One is a standard setup that employs a non-frequency stabilised continuous wave laser as a source. In the other two experiments, the same laser is actively frequency stabilised to the ringdown cavity. This development allows for increased repetition rate of the experimental signal and thus the spectroscopic sensitivity of the method is improved. These setups are applied to the recording of several vibration-rotation overtone bands of both H(12)C(12)CH and H(13)C(13)CH. An intra-cavity laser absorption spectroscopy setup that uses a commercial continuous wave ring laser and a Fourier transform interferometer is presented. The configuration of the laser is found to be sub-optimal for high-sensitivity work but the spectroscopic results are good and show the viability of this type of approach. Several ro-vibrational bands of carbon-13 substituted acetylenes are recorded and analysed. Compared with earlier work, the signal-to-noise ratio of a laser-induced dispersed infrared fluorescence experiment is enhanced by more than one order of magnitude by exploiting the geometric characteristics of the setup. The higher sensitivity of the spectrometer leads to the observation of two new symmetric vibrational states of H(12)C(12)CH. The precision of the spectroscopic parameters of some previously published symmetric states is also improved. An interesting collisional energy transfer process is observed for the excited vibrational states and this phenomenon is explained by a simple step-down model.
Resumo:
A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.
Resumo:
A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.
Resumo:
Interaction of graphene, graphene oxide, and related nanocarbons with radiation gives rise to many novel properties and phenomena. Irradiation of graphene oxide in solid state or in solution by sunlight, UV radiation, or excimer laser radiation reduces it to graphene with negligible oxygen functionalities on the surface. This transformation can be exploited for nanopatterning and for large scale production of reduced graphene oxide (RGO). Laser-induced dehydrogenation of hydrogenated graphene can also be used for this purpose. All such laser-induced transformations are associated with thermal effects. RGO emits blue light on UV excitation, a feature that can be used to generate white light in combination with a yellow emitter. RGO as well as graphene nanoribbons are excellent detectors of infra-red radiation while RGO is a good UV detector.
Resumo:
Control of multiple filamentation by laser-induced microlens effect due to a nonlinear interaction of two overlapping laser beams inside a glass plate was demonstrated. Individual or multiple spots on the white light pattern which is a product of multiple filamentation through a mesh can be switched on and off with a very high contrast ratio on a femtosecond time scale. This phenomenon can find applications such as ultrafast optical switch and high-speed sampling. (C) 2005 American Institute of Physics.
Resumo:
We report micromodification of Eu element distribution in a silicate glass with femtosecond laser irradiation. Elemental analysis shows that the content of Eu decreased at the focal point and increased in a ring-shaped region around the focal point, which indicates migration of Eu ions has been induced by the femtosecond laser irradiation. Confocal fluorescence spectra demonstrate that the fluorescence intensity of Eu3+ ions increased by 20% in the laser-induced, Eu-enriched, ring-shaped region compared with that for nonirradiated glass. The mechanism for the laser induced change in fluorescence properties of Eu3+ has been investigated. (C) 2009 Optical Society of America
Resumo:
In this paper, we report the laser-induced periodic structure with different spatial characteristics on the surface of polished ZnO single-crystalline by high repetition rate femtosecond laser pulses. This study demonstrates that, using different laser parameters and irradiation conditions, ZnO nanoripples and nanorods were successfully prepared. We have investigated the surface by means of scanning electron microscope (SEM), Raman scattering and photoluminescence (PL). We propose that second-order harmonic has a strong influence on the formation of nanostructures. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations. (C) 2007 Elsevier B.V. All rights reserved.