878 resultados para Hierarchical Bayesian Metaanalysis
Resumo:
Resumen tomado de la publicación
Resumo:
Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities
Resumo:
After publication of this work in 'International Journal of Health Geographics' on 13 january 2011 was wrong. The map of Barcelona in Figure two (figure 1 here) was reversed. The final correct Figure is presented here
Resumo:
To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.
Resumo:
We demonstrate that it is possible to link multi-chain molecular dynamics simulations with the tube model using a single chain slip-links model as a bridge. This hierarchical approach allows significant speed up of simulations, permitting us to span the time scales relevant for a comparison with the tube theory. Fitting the mean-square displacement of individual monomers in molecular dynamics simulations with the slip-spring model, we show that it is possible to predict the stress relaxation. Then, we analyze the stress relaxation from slip-spring simulations in the framework of the tube theory. In the absence of constraint release, we establish that the relaxation modulus can be decomposed as the sum of contributions from fast and longitudinal Rouse modes, and tube survival. Finally, we discuss some open questions regarding possible future directions that could be profitable in rendering the tube model quantitative, even for mildly entangled polymers
Resumo:
Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Correlating Bayesian date estimates with climatic events and domestication using a bovine case study
Resumo:
The tribe Bovini contains a number of commercially and culturally important species, such as cattle. Understanding their evolutionary time scale is important for distinguishing between post-glacial and domestication-associated population expansions, but estimates of bovine divergence times have been hindered by a lack of reliable calibration points. We present a Bayesian phylogenetic analysis of 481 mitochondrial D-loop sequences, including 228 radiocarbon-dated ancient DNA sequences, using a multi-demographic coalescent model. By employing the radiocarbon dates as internal calibrations, we co-estimate the bovine phylogeny and divergence times in a relaxed-clock framework. The analysis yields evidence for significant population expansions in both taurine and zebu cattle, European aurochs and yak clades. The divergence age estimates support domestication-associated expansion times (less than 12 kyr) for the major haplogroups of cattle. We compare the molecular and palaeontological estimates for the Bison-Bos divergence.
Resumo:
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Systems Engineering often involves computer modelling the behaviour of proposed systems and their components. Where a component is human, fallibility must be modelled by a stochastic agent. The identification of a model of decision-making over quantifiable options is investigated using the game-domain of Chess. Bayesian methods are used to infer the distribution of players’ skill levels from the moves they play rather than from their competitive results. The approach is used on large sets of games by players across a broad FIDE Elo range, and is in principle applicable to any scenario where high-value decisions are being made under pressure.
Resumo:
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.