854 resultados para Fractional integration
Resumo:
Smart Cities are designed to be living systems and turn urban dwellers life more comfortable and interactive by keeping them aware of what surrounds them, while leaving a greener footprint. The Future Cities Project [1] aims to create infrastructures for research in smart cities including a vehicular network, the BusNet, and an environmental sensor platform, the Urban Sense. Vehicles within the BusNet are equipped with On Board Units (OBUs) that offer free Wi-Fi to passengers and devices near the street. The Urban Sense platform is composed by a set of Data Collection Units (DCUs) that include a set of sensors measuring environmental parameters such as air pollution, meteorology and noise. The Urban Sense platform is expanding and receptive to add new sensors to the platform. The parnership with companies like TNL were made and the need to monitor garbage street containers emerged as air pollution prevention. If refuse collection companies know prior to the refuse collection which route is the best to collect the maximum amount of garbage with the shortest path, they can reduce costs and pollution levels are lower, leaving behind a greener footprint. This dissertation work arises in the need to monitor the garbage street containers and integrate these sensors into an Urban Sense DCU. Due to the remote locations of the garbage street containers, a network extension to the vehicular network had to be created. This dissertation work also focus on the Multi-hop network designed to extend the vehicular network coverage area to the remote garbage street containers. In locations where garbage street containers have access to the vehicular network, Roadside Units (RSUs) or Access Points (APs), the Multi-hop network serves has a redundant path to send the data collected from DCUs to the Urban Sense cloud database. To plan this highly dynamic network, the Wi-Fi Planner Tool was developed. This tool allowed taking measurements on the field that led to an optimized location of the Multi-hop network nodes with the use of radio propagation models. This tool also allowed rendering a temperature-map style overlay for Google Earth [2] application. For the DCU for garbage street containers the parner company provided the access to a HUB (device that communicates with the sensor inside the garbage containers). The Future Cities use the Raspberry pi as a platform for the DCUs. To collect the data from the HUB a RS485 to RS232 converter was used at the physical level and the Modbus protocol at the application level. To determine the location and status of the vehicles whinin the vehicular network a TCP Server was developed. This application was developed for the OBUs providing the vehicle Global Positioning System (GPS) location as well as information of when the vehicle is stopped, moving, on idle or even its slope. To implement the Multi-hop network on the field some scripts were developed such as pingLED and “shark”. These scripts helped upon node deployment on the field as well as to perform all the tests on the network. Two setups were implemented on the field, an urban setup was implemented for a Multi-hop network coverage survey and a sub-urban setup was implemented to test the Multi-hop network routing protocols, Optimized Link State Routing Protocol (OLSR) and Babel.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole–Cole, Davidson–Cole, and Havriliak–Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.
Resumo:
Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.
Resumo:
This article presents a novel method for visualizing the control systems behavior. The proposed scheme uses the tools of fractional calculus and computes the signals propagating within the system structure as a time/frequency-space wave. Linear and nonlinear closed-loop control systems are analyzed, for both the time and frequency responses, under the action of a reference step input signal. Several nonlinearities, namely, Coulomb friction and backlash, are also tested. The numerical experiments demonstrate the feasibility of the proposed methodology as a visualization tool and motivate its extension for other systems and classes of nonlinearities.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
A manutenção é uma área extremamente importante, principalmente na indústria. Devidamente organizada, permitirá um fluxo produtivo devidamente planeado e executado, que permitirá a qualquer empresa manter o nível de facturação desejado e o prazo de entrega acordado com os clientes. De outra forma, poderá originar o caos. No entanto, os desafios de gestão da produção mais correntes, nomeadamente através do Lean Manufacturing, passam a exigir um pouco mais do que uma simples manutenção. Torna-se obrigatório fazer análises económicas que permitam averiguar quando cada equipamento passa a exigir custos de manutenção excessivos, os quais poderão obrigar a um recondicionamento mais acentuado do equipamento, o qual pode passar inclusivamente por uma melhoria da sua performance. Nestes casos, terá que existir uma “cumplicidade” entre a Direcção de Produção e a Manutenção, no sentido de averiguar o melhor momento para proceder a uma melhoria do equipamento, numa perspectiva de funcionamento global em linha de produção, adaptando-o à performance que será exigida ao conjunto. Neste domínio, o Projecto passa a prestar um serviço valiosíssimo à empresa, integrando-se no conjunto Produção + Manutenção, criando valor na intervenção, através do desenvolvimento de um trabalho que permite não só repor o estado natural da produção, mas sim promover uma melhoria sustentada da mesma. Este trabalho pretende reflectir e avaliar a relevância do Projecto neste tipo de operações, contribuindo de uma forma sistemática e sustentada para a melhoria contínua dos processos de fabrico. É apresentado um caso de estudo que pretende validar todo o desenvolvimento anteriormente realizado na matéria.
Resumo:
The ever increasing popularity of social media makes it a promising source for the personalization of gameplay experiences. Furthermore, involving social network friends in a game can greatly enrich the satisfaction of the player and also attract potential novel players to a game. This master thesis describes a social overlay designed for desktop games, called GameNshare. It allows players to easily capture and share with multiple social networks game-related screenshots, videos and stories. Additionally, it also provides asynchronous multiplayer game mechanics to directly integrate social network friends in the game. GameNshare was designed to interact with the users in a non-intrusive way allowing them to be in complete control of what is shared. It prevents unsolicited sharing of messages, a key problem in social media integration tools, by the use of built-in message monitoring and anti-spam measures. GameNshare was specially designed for players aged from 18 to 25 years that are regular users of Twitter and Facebook. It was tested by a group of 10 individuals from the target age range that were surveyed to capture their insights on the use of the social overlay. The implemented GameNshare features were well accepted by the testers that were also useful in highlighting features for future development. GameNshare ultimate goal is to make players look and ask for social integration and allow them to take full advantage of their social communities to improve gaming experiences.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation to obtain PhD in Industrial Engineering
Resumo:
Often, fixed-line incumbents also own the largest mobile network. We consider the effect of this joint ownership on market outcomes. Our model predicts that while fixed-to-mobile call prices to the integrated mobile network are more efficient than under separation, those to rival mobile networks are distorted upwards, amplifying any incumbency advantage. As concerns potential remedies, a uniform off-net pricing constraint leads to higher welfare than functional separation and even allows to maintain some of the efficiency gains.