903 resultados para Flash fermentation
Resumo:
Rhizopus stolonifer was cultivated in wheat bran to produce a cellulase-free alkaline xylanase. The purified enzyme obtained after molecular exclusion chromatography in Sephacryl S-200 HR showed optimum temperature as 45 degrees C and hydrolysis pHs optima as pH 6.0 and 9.0. Xylanase presented higher Vmax at pH 9.0 (0.87 mu mol/mg protein) than at pH 6.0 and minor Km at pH 6.0 (7.42 mg/mL)than at pH 9.0.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work studied the influence of nitrogen source and sucrose concentration in the feeding medium for biomass and inulinase production by Kluyveromyces marxianus var. bulgaricus. The results show that the best nitrogen source was a combination of 5 g/L of yeast extract and 10 g/L of peptone. Both cellular growth and enzymatic activity increased with sucrose concentration in the feeding medium (from 200 to 500 g/L). When the sucrose concentration reached 600 g/L, both cellular growth and enzymatic activity decreased.
Resumo:
The use of sugarcane bagasse and grass as low cost raw material for xylanase production by Bacillus circulans D1 in submerged fermentation was investigated. The microorganism was cultivated in a mineral medium containing hydrolysate of bagasse or grass as carbon source. High production of enzyme was obtained during growth in media with bagasse hydrolysates (8.4 U/mL) and in media with grass hydrolysates (7.5 U/mL). Xylanase production in media with hydrolysates was very close to that obtained in xylan containing media (7.0 U/ mL) and this fact confirm the feasibility of using this agro-industrial byproducts by B. circulans D1 as an alternative to save costs on the enzyme production process. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Selection of the best source of carbon for production of recombinants enzymes in liquid fermentation
Resumo:
The pectinolytic enzyme obtained from Penicillium viridicatum RFC by solid-state fermentation was purified to homogeneity by pretreatment with kaolin (40 mg mL(-1) ) and ultrafiltration. followed by chromatography on a Sephadex G50 column. The apparent molecular weight of the enzyme was 24 kDa. Maximal activity occurred at pH 6.0 and at 60 degrees C. The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of highly esterified pectin. The presence of 10 mM Ba2+ increased the enzyme activity by 96% and its thermal stability by 30%. besides increasing its stability at acid pH. The apparent K-m with apple pectin as substrate was 1.82 mg mL(-1) and the V-max was 81 mu mol min(-1). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) and pectin liase (PL) were produced by solid-state fermentation of a mixture of orange bagasse and wheat bran (1:1) with the filamentous fungus Penicillium viridicatum RFC3. This substrate was prepared with two moisture contents, 70% and 80%, and each was fermented in two types of container, Erlenmeyer flask and polypropylene pack. When Erlenmeyer flasks were used, the medium containing 80% of initial moisture afforded higher PL production while neither exo- nor endo-PG production was influenced by substrate moisture. The highest enzyme activities obtained were 0.70 U mL(-1) for endo-PG, 8.90 U mL(-1) for exo-PG, and 41.30 U mL(-1) for PL. However, when the fermentation was done in polypropylene packs, higher production of all three enzymes was obtained at 70% moisture (0.7 and 8.33 U mL(-1) for endo- and exo-PG and 100 U mL(-1) for PL). An increase in the pH and decrease in the reducing sugar content of the medium was observed. The fungus was able to produce pectin esterase and other depolymerizing enzymes such as xylanase, CMCase, protease and amylase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)