902 resultados para Eigenvalue Bounds
Resumo:
This paper presents a search for Higgs bosons decaying to four leptons, either electrons or muons, via one or two light exotic gauge bosons Zd, H→ZZd→4ℓ or H→ZdZd→4ℓ. The search was performed using pp collision data corresponding to an integrated luminosity of about 20 fb−1 at the center-of-mass energy of s√=8TeV recorded with the ATLAS detector at the Large Hadron Collider. The observed data are well described by the Standard Model prediction. Upper bounds on the branching ratio of H→ZZd→4ℓ and on the kinetic mixing parameter between the Zd and the Standard Model hypercharge gauge boson are set in the range (1--9)×10−5 and (4--17)×10−2 respectively, at 95% confidence level assuming the Standard Model branching ratio of H→ZZ∗→4ℓ, for Zd masses between 15 and 55 GeV. Upper bounds on the effective mass mixing parameter between the Z and the Zd are also set using the branching ratio limits in the H→ZZd→4ℓ search, and are in the range (1.5--8.7)×10−4 for 15
Resumo:
OBJETIVO: Este trabalho apresenta resultados acerca das propriedades psicométricas da "Escala de atitudes frente ao HIV/AIDS". Os dados, provenientes de uma amostra de 549 alunos entre universitários, ensinos médio e ensino fundamental. MÉTODOS: Os dados foram tratados pelo método dos componentes principais da análise fatorial. A análise final, postulado um eigenvalue mínimo de 2, resultou cinco fatores. Foram eliminados itens que apresentaram carga fatorial menor que 0,30. Neste estudo, o menor alfa observado foi de 0,79. Portanto, é provável que todos os 47 itens do instrumento final elaborado meçam o mesmo construto: atitude frente ao HIV/AIDS. RESULTADOS: Escores inferiores a 96 foram considerados "fraco grau de conhecimento sobre HIV/AIDS"; entre 96 e 192 "moderado grau de conhecimento" e acima de 192 "alto grau de conhecimento sobre HIV/AIDS". Foram estabelecidos os fatores: 1, 2 e 3, sendo "fator geral de percepção da informação técnico-científica"; "fator de percepção da informação técnico-científica versus sexualidade e preconceito"; "fator de percepção da informação técnico-científica no uso de drogas", respectivamente. CONCLUSÕES: O alfa de Cronbach encontrado para a escala como um todo foi de 0,859, sugerindo fortemente a existência da fidedignidade do instrumento que se mostrou útil para avaliar o grau de conhecimento acerca do HIV/AIDS e o risco decorrente do desconhecimento, entre estudantes.
Resumo:
Distribution systems, eigenvalue analysis, nodal admittance matrix, power quality, spectral decomposition
Resumo:
Rotation distance quantifies the difference in shape between two rooted binary trees of the same size by counting the minimum number of elementary changes needed to transform one tree to the other. We describe several types of rotation distance, and provide upper bounds on distances between trees with a fixed number of nodes with respect to each type. These bounds are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
We analyze situations in which a group of agents (and possibly a designer) have to reach a decision that will affect all the agents. Examples of such scenarios are the location of a nuclear reactor or the siting of a major sport event. To address the problem of reaching a decision, we propose a one-stage multi-bidding mechanism where agents compete for the project by submitting bids. All Nash equilibria of this mechanism are efficient. Moreover, the payoffs attained in equilibrium by the agents satisfy intuitively appealing lower bounds..
Resumo:
We present experimental and theoretical analyses of data requirements for haplotype inference algorithms. Our experiments include a broad range of problem sizes under two standard models of tree distribution and were designed to yield statistically robust results despite the size of the sample space. Our results validate Gusfield's conjecture that a population size of n log n is required to give (with high probability) sufficient information to deduce the n haplotypes and their complete evolutionary history. The experimental results inspired our experimental finding with theoretical bounds on the population size. We also analyze the population size required to deduce some fixed fraction of the evolutionary history of a set of n haplotypes and establish linear bounds on the required sample size. These linear bounds are also shown theoretically.
Resumo:
Using the standard real business cycle model with lump-sum taxes, we analyze the impact of fiscal policy when agents form expectations using adaptive learning rather than rational expectations (RE). The output multipliers for government purchases are significantly higher under learning, and fall within empirical bounds reported in the literature (in sharp contrast to the implausibly low values under RE). Effectiveness of fiscal policy is demonstrated during times of economic stress like the recent Great Recession. Finally it is shown how learning can lead to dynamics empirically documented during episodes of 'fiscal consolidations.'
Resumo:
This paper introduces a new model of trend (or underlying) inflation. In contrast to many earlier approaches, which allow for trend inflation to evolve according to a random walk, ours is a bounded model which ensures that trend inflation is constrained to lie in an interval. The bounds of this interval can either be fixed or estimated from the data. Our model also allows for a time-varying degree of persistence in the transitory component of inflation. The bounds placed on trend inflation mean that standard econometric methods for estimating linear Gaussian state space models cannot be used and we develop a posterior simulation algorithm for estimating the bounded trend inflation model. In an empirical exercise with CPI inflation we find the model to work well, yielding more sensible measures of trend inflation and forecasting better than popular alternatives such as the unobserved components stochastic volatility model.
Resumo:
Faced with the problem of pricing complex contingent claims, an investor seeks to make his valuations robust to model uncertainty. We construct a notion of a model- uncertainty-induced utility function and show that model uncertainty increases the investor's eff ective risk aversion. Using the model-uncertainty-induced utility function, we extend the \No Good Deals" methodology of Cochrane and Sa a-Requejo [2000] to compute lower and upper good deal bounds in the presence of model uncertainty. We illustrate the methodology using some numerical examples.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
This paper considers the optimal degree of discretion in monetary policy when the central bank conducts policy based on its private information about the state of the economy and is unable to commit. Society seeks to maximize social welfare by imposing restrictions on the central bank's actions over time, and the central bank takes these restrictions and the New Keynesian Phillips curve as constraints. By solving a dynamic mechanism design problem we find that it is optimal to grant "constrained discretion" to the central bank by imposing both upper and lower bounds on permissible inflation, and that these bounds must be set in a history-dependent way. The optimal degree of discretion varies over time with the severity of the time-inconsistency problem, and, although no discretion is optimal when the time-inconsistency problem is very severe, our numerical experiment suggests that no-discretion is a transient phenomenon, and that some discretion is granted eventually.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We study the concept of propagation connectivity on random 3-uniform hypergraphs. This concept is inspired by a simple linear time algorithm for solving instances of certain constraint satisfaction problems. We derive upper and lower bounds for the propagation connectivity threshold, and point out some algorithmic implications.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.