975 resultados para Doped Zno Films


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the dielectric properties of pure and lanthanum modified bismuth titanate thin films obtained by the polymeric precursor method. X-ray diffraction of the film annealed at 300 degrees C for 2h indicates a disordered structure. Lanthanum addition increases gradually the dielectric permittivity of films, keeping unchanged their loss tangent. From C-V curve we can see no hysteresis behavior indicating the absence of domain structure. The decrease in the conductivity for the heavily doped Bi4Ti3O12 (BIT) must be associated to the unidentified crystal defects. For comparison, dielectric properties of crystalline BIT film were also investigated. (C) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A frequency upconversion process in Pr(3+) doped TeO(2)-ZnO glasses containing silver nanoparticles is studied under excitation with a nanosecond laser operating at 590 nm, in resonance with the (3)H(4)-->(1)D(2) transition. The excited Pr(3+) ions exchange energy in the presence of the nanoparticles, originating efficient conversion from orange to blue. The enhancement in the intensity of the luminescence at similar to 482 nm, corresponding to the (3)P(0)-->(3)H(4) transition, is due to the influence of the large local field on the Pr(3+) ions, which are located near the metallic nanoparticles. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from aqueous colloidal suspensions, undoped and Nb5+ doped SnO2 thin films have been prepared by using the dip-coating sol gel process. X-ray diffraction results show that films are polycrystalline with crystallites of average size1-4nm. Decreasing the thickness of the films and increasing the Nb5+ concentration limits the crystallite size growth during firing. Complex impedance measurements reveal capacitive and resistive effects between adjacent crystallites or grains, characteristic of electrical potential barriers. The transfer of charge throughout these barriers determines the macroscopic electrical resistance of the layer. The analysis of the optical absorption spectra shows that the samples present more than 80% of their transmittance in the visible region and the value of the band gap energy increases with decreasing crystallite size. © 1997 Chapman & Hall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped (2 atg%) SnO2 have been prepared by sol-gel dip-coating technique on borosilicate glasses. Variation of photoconductivity excitation with wavelength and optical absorption indicate indirect bandgap transition with energy of ≅ 3.5 eV. Conductance as function of temperature indicates two levels of capture with 39 and 81 meV as activation energies, which may be related to an Sb donor and oxygen vacancy respectively. Electron trapping by these levels are practically destroyed by UV photoexcitation (305 nm) and heating in vacuum to 200°C. Gas analysis using a mass spectrometer indicates an oxygen related level, which may not be desorbed in the simpler O2 form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work reports the study of KCl thin films doped with In+ or Tl+. Both systems show optical absorption bands similar to single crystals. As the impurity concentration increases, so does the absorption as also the half band width, unlike in KCl: Cu+ films. Further experimental techniques such as X-ray diffraction, scanning electron micrographs and energy dispersive X-ray observations were used and comparative analysis with KCl : Cu+ films reveals new conditions for better crystallinity of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites produced during the in situ chemical polymerization of aniline on top of a poly(ethylene terephthalate) (PET) film, in different conditions, were studied by open-circuit potential (Voc), ultraviolet-visible, and infrared spectroscopy, electrical conductivity measurements, scanning electron microscopy, and atomic force microscopy. The polymerization monitoring by Voc showed a maximum associated with the intermediate pernigraniline oxidation state and a final formation of polyaniline (PANI) in the doped emeraldine salt (ES) form. Furthermore, high electrical conductivity values were obtained for the PANI-ES coating prepared under selected conditions. A globular formation was observed for the doped PANI-ES coating with globules of sizes of the same order and same shape of the PET, demonstrating the influence of the substrate on the coating morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present results on the preparation of planar waveguides based on HfO2 and HfO2-SiO2. Stable sols containing europium and erbium doped HfO2 nanoparticles have been prepared and characterized. The nanosized sol was either deposited (spin-coating) on quartz substrates or embedded in (3-glycidoxipropil)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The refractive index dispersion and luminescence characteristics were determined for the resulting HfO2 films. The optical parameters of the waveguides such as refractive index, thickness and propagation losses were measured for the hybrid composite. The planar waveguides present thickness of a few micra and support well confined propagating modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.