783 resultados para Data Mining and Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research is to to investigate how a supportive relationship between teachers and students in the classroom can improve the learning process. By having a good relationship with students, teachers can offer to students chances to be motivated and feel engaged in the learning process. Students will be engaged actively in the learning instead of being passive learners. I wish to investigate how using communicative approach and cooperative learning strategies while teaching do affect and improve students’ learning performance. To achieve these goals qualitative data collection was used as the primary method. The results show that teachers and students value a supportive and caring relationship between them and that interaction is essential to the teacher-student relationship. This sense of caring and supporting from teachers motivates students to become a more interested learner. Students benefit and are motivated when their teachers create a safe and trustful environment. And also the methods and strategies teachers uses, makes students feel engaged and stimulated to participate in the learning process. The students have in their mind that a positive relationship with their teachers positively impacts their interest and motivation in school which contributes to the enhancement of the learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis author approaches the problem of automated text classification, which is one of basic tasks for building Intelligent Internet Search Agent. The work discusses various approaches to solving sub-problems of automated text classification, such as feature extraction and machine learning on text sources. Author also describes her own multiword approach to feature extraction and pres-ents the results of testing this approach using linear discriminant analysis based classifier, and classifier combining unsupervised learning for etalon extraction with supervised learning using common backpropagation algorithm for multilevel perceptron.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tarkoituksena oli kerätä käyttövarmuustietoa savukaasulinjasta kahdelta suomalaiselta sellutehtaalta niiden käyttöönotosta aina tähän päivään asti. Käyttövarmuustieto koostuu luotettavuustiedoista sekä kunnossapitotiedoista. Kerätyn tiedon avulla on mahdollista kuvata tarkasti laitoksen käyttövarmuutta seuraavilla tunnusluvuilla: suunnittelemattomien häiriöiden lukumäärä ja korjausajat, laitteiden seisokkiaika, vikojen todennäköisyys ja korjaavan kunnossapidon kustannukset suhteessa savukaasulinjan korjaavan kunnossapidon kokonaiskustannuksiin. Käyttövarmuustiedon keräysmetodi on esitelty. Savukaasulinjan kriittisten laitteiden määrittelyyn käytetty metodi on yhdistelmä kyselytutkimuksesta ja muunnellusta vian vaikutus- ja kriittisyysanalyysistä. Laitteiden valitsemiskriteerit lopulliseen kriittisyysanalyysiin päätettiin käyttövarmuustietojen sekä kyselytutkimuksen perusteella. Kriittisten laitteiden määrittämisen tarkoitus on löytää savukaasulinjasta ne laitteet, joiden odottamaton vikaantuminen aiheuttaa vakavimmat seuraukset savukaasulinjan luotettavuuteen, tuotantoon, turvallisuuteen, päästöihin ja kustannuksiin. Tiedon avulla rajoitetut kunnossapidon resurssit voidaan suunnata oikein. Kriittisten laitteiden määrittämisen tuloksena todetaan, että kolme kriittisintä laitetta savukaasulinjassa ovat molemmille sellutehtaille yhteisesti: savukaasupuhaltimet, laahakuljettimet sekä ketjukuljettimet. Käyttövarmuustieto osoittaa, että laitteiden luotettavuus on tehdaskohtaista, mutta periaatteessa samat päälinjat voidaan nähdä suunnittelemattomien vikojen todennäköisyyttä esittävissä kuvissa. Kustannukset, jotka esitetään laitteen suunnittelemattomien kunnossapitokustannusten suhteena savukaasulinjan kokonaiskustannuksiin, noudattelevat hyvin pitkälle luotettavuuskäyrää, joka on laskettu laitteen seisokkiajan suhteena käyttötunteihin. Käyttövarmuustiedon keräys yhdistettynä kriittisten laitteiden määrittämiseen mahdollistavat ennakoivan kunnossapidon oikean kohdistamisen ja ajoittamisen laitteiston elinaikana siten, että luotettavuus- ja kustannustehokkuusvaatimukset saavutetaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested and compared performances of Roach formula, Partin tables and of three Machine Learning (ML) based algorithms based on decision trees in identifying N+ prostate cancer (PC). 1,555 cN0 and 50 cN+ PC were analyzed. Results were also verified on an independent population of 204 operated cN0 patients, with a known pN status (187 pN0, 17 pN1 patients). ML performed better, also when tested on the surgical population, with accuracy, specificity, and sensitivity ranging between 48-86%, 35-91%, and 17-79%, respectively. ML potentially allows better prediction of the nodal status of PC, potentially allowing a better tailoring of pelvic irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of methods to explore data from educational settings, to understand better the learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to group temporal profiles of 10-day composites NDVI product by similarity, which was obtained by the SPOT Vegetation sensor, for municipalities with high soybean production in the state of Paraná, Brazil, in the 2005/2006 cropping season. Data mining is a valuable tool that allows extracting knowledge from a database, identifying valid, new, potentially useful and understandable patterns. Therefore, it was used the methods for clusters generation by means of the algorithms K-Means, MAXVER and DBSCAN, implemented in the WEKA software package. Clusters were created based on the average temporal profiles of NDVI of the 277 municipalities with high soybean production in the state and the best results were found with the K-Means algorithm, grouping the municipalities into six clusters, considering the period from the beginning of October until the end of March, which is equivalent to the crop vegetative cycle. Half of the generated clusters presented spectro-temporal pattern, a characteristic of soybeans and were mostly under the soybean belt in the state of Paraná, which shows good results that were obtained with the proposed methodology as for identification of homogeneous areas. These results will be useful for the creation of regional soybean "masks" to estimate the planted area for this crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to identify differences in swine vocalization pattern according to animal gender and different stress conditions. A total of 150 barrow males and 150 females (Dalland® genetic strain), aged 100 days, were used in the experiment. Pigs were exposed to different stressful situations: thirst (no access to water), hunger (no access to food), and thermal stress (THI exceeding 74). For the control treatment, animals were kept under a comfort situation (animals with full access to food and water, with environmental THI lower than 70). Acoustic signals were recorded every 30 minutes, totaling six samples for each stress situation. Afterwards, the audios were analyzed by Praat® 5.1.19 software, generating a sound spectrum. For determination of stress conditions, data were processed by WEKA® 3.5 software, using the decision tree algorithm C4.5, known as J48 in the software environment, considering cross-validation with samples of 10% (10-fold cross-validation). According to the Decision Tree, the acoustic most important attribute for the classification of stress conditions was sound Intensity (root node). It was not possible to identify, using the tested attributes, the animal gender by vocal register. A decision tree was generated for recognition of situations of swine hunger, thirst, and heat stress from records of sound intensity, Pitch frequency, and Formant 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open data refers to publishing data on the web in machine-readable formats for public access. Using open data, innovative applications can be developed to facilitate people‟s lives. In this thesis, based on the open data cases (discussed in the literature review), Open Data Lappeenranta is suggested, which publishes open data related to opening hours of shops and stores in Lappeenranta City. To prove the possibility of creating Open Data Lappeenranta, the implementation of an open data system is presented in this thesis, which publishes specific data related to shops and stores (including their opening hours) on the web in standard format (JSON). The published open data is used to develop web and mobile applications to demonstrate the benefits of open data in practice. Also, the open data system provides manual and automatic interfaces which make it possible for shops and stores to maintain their own data in the system. Finally in this thesis, the completed version of Open Data Lappeenranta is proposed, which publishes open data related to other fields and businesses in Lappeenranta beyond only stores‟ data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014