928 resultados para Curriculum change - Singapore
Resumo:
Educational assessment was a worldwide commonplace practice in the last century. With the theoretical underpinnings of education shifting from behaviourism and social efficiency to constructivism and cognitive theories in the past two decades, the assessment theories and practices show a widespread changing movement. The emergent assessment paradigm, with a futurist perspective, indicates a deviation away from the prevailing large scale high-stakes standardised testing and an inclination towards classroom-based formative assessment. Innovations and reforms initiated in attempts to achieve better education outcomes for a sustainable future via more developed learning and assessment theories have included the 2007 College English Reform Program (CERP) in Chinese higher education context. This paper focuses on the College English Test (CET) - the national English as a Foreign Language (EFL) testing system for non-English majors at tertiary level in China. It seeks to explore the roles that the CET played in the past two College English curriculum reforms, and the new role that testing and assessment assumed in the newly launched reform. The paper holds that the CET was operationalised to uplift the standards. However, the extended use of this standardised testing system brings constraints as well as negative washback effects on the tertiary EFL education. Therefore in the newly launched reform -CERP, a new assessment model which combines summative and formative assessment approaches is proposed. The testing and assessment, assumed a new role - to engender desirable education outcomes. The question asked is: will the mixed approach to formative and summative assessment provide the intended cure to the agony that tertiary EFL education in China has long been suffering - spending much time, yet achieving little effects? The paper reports the progresses and challenges as informed by the available research literature, yet asserts a lot needs to be explored on the potential of the assessment mix in this examination tradition deep-rooted and examination-obsessed society.
Resumo:
This project builds on the First Year Curriculum Project that was carried out at the Queensland University of Technology (QUT) in 2006-2007 (QUT, 2007). One of the objectives of that project was “to develop principles for the Course Development processes that capture good design in first year curriculum practice” (p. 1) and this was achieved through the development of a set of broad organising principles for first year curriculum design—the First Year Curriculum Principles (FYCPs) (Kift, 2008).
Resumo:
This abstract is a preliminary discussion of the importance of blending of Indigenous cultural knowledges with mainstream knowledges of mathematics for supporting Indigenous young people. This import is emphasised in the documents Preparing the Ground for Partnership (Priest, 2005), The Indigenous Education Strategic Directions 2008–2011 (Department of Education, Training and the Arts, 2007) and the National Goals for Indigenous Education (Department of Education, Employment and Work Relations, 2008). These documents highlight the contextualising of literacy and numeracy to students’ community and culture (see Priest, 2005). Here, Community describes “a culture that is oriented primarily towards the needs of the group. Martin Nakata (2007) describes contextualising to culture as about that which already exists, that is, Torres Strait Islander community, cultural context and home languages (Nakata, 2007, p. 2). Continuing, Ezeife (2002) cites Hollins (1996) in stating that Indigenous people belong to “high-context culture groups” (p. 185). That is, “high-context cultures are characterized by a holistic (top-down) approach to information processing in which meaning is “extracted” from the environment and the situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information processing in which meaning is constructed” (p.185). In this regard, students who use holistic thought processing are more likely to be disadvantaged in mainstream mathematics classrooms. This is because Westernised mathematics is presented as broken into parts with limited connections made between concepts and with the students’ culture. It potentially conflicts with how they learn. If this is to change the curriculum needs to be made more culture-sensitive and community orientated so that students know and understand what they are learning and for what purposes.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
Since the 1960s, numerous studies on problem solving have revealed the complexity of the domain and the difficulty in translating research findings into practice. The literature suggests that the impact of problem solving research on the mathematics curriculum has been limited. Furthermore, our accumulation of knowledge on the teaching of problem solving is lagging. In this first discussion paper we initially present a sketch of 50 years of research on mathematical problem solving. We then consider some factors that have held back problem solving research over the past decades and offer some directions for how we might advance the field. We stress the urgent need to take into account the nature of problem solving in various arenas of today’s world and to accordingly modernize our perspectives on the teaching and learning of problem solving and of mathematical content through problem solving. Substantive theory development is also long overdue—we show how new perspectives on the development of problem solving expertise can contribute to theory development in guiding the design of worthwhile learning activities. In particular, we explore a models and modeling perspective as an alternative to existing views on problem solving.
Resumo:
Undoubtedly, the past half-century has witnessed an escalation of changes in the social, political, economic and educational structures in many societies around the world. Some have seen change as a challenge and hope while, for many others, it is a source of concern and worry. Some have adopted change with gusto, while for many it is something to be resisted. Some say we live in a world and times with an increasing awareness that “times are changing”, while for some “the more things change, the more they stay the same”.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discussion paper argues for the integration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
There are various understandings of peace education. What might be called maximalist peace education refers to educating students towards personal fulfilment and the creation of a just and co-operative society. What might be called minimalist peace education refers to educating students to avoid war, militarism and arms races. Peace education is only now being formally accepted as an integral part of educational endeavour, and an important part of this acceptance is recognition in international pronouncements and instruments, emphasizing the importance of a culture of peace and the right to peace. In terms of methodology, peace education includes curriculum, structures and process, and personal leadership. This last element is clearly the most challenging of all.
Resumo:
Innovation Management (IM) in most knowledge based firms is used on an adhoc basis where senior managers use this term to leverage competitive edge without understanding its true meaning and how its robust application in organisation impacts organisational performance. There have been attempts in the manufacturing industry to harness the innovative potential of the business and apprehend its use as a point of difference to improve financial and non financial outcomes. However further work is required to innovatively extrapolate the lessons learnt to introduce incremental and/or radical innovation to knowledge based firms. An international structural engineering firm has been proactive in exploring and implementing this idea and has forged an alliance with the Queensland University of Technology to start the Innovation Management Program (IMP). The aim was to develop a permanent and sustainable program with which innovation can be woven through the fabric of the organisation. There was an intention to reinforce the firms’ vision and reinvigorate ideas and create new options that help in its realisation. This paper outlines the need for innovation in knowledge based firms and how this consulting engineering firm reacted to this exigency. The development of the Innovation Management Program, its different themes (and associated projects) and how they integrate to form a holistic model is also discussed. The model is designed around the need of providing professional qualification improvement opportunities for staff, setting-up organised, structured & easily accessible knowledge repositories to capture tacit and explicit knowledge and implement efficient project management strategies with a view to enhance client satisfaction. A Delphi type workshop is used to confirm the themes and projects. Some of the individual projects and their expected outcomes are also discussed. A questionnaire and interviews were used to collect data to select appropriate candidates responsible for leading these projects. Following an in-depth analysis of preliminary research results, some recommendations on the selection process will also be presented.
Resumo:
Embedding gifted education practices requires major professional development strategies supported by transparent, credible and enforceable policy. This paper describes an analysis of a state-wide initiative involving the establishment of a series of schools tasked to develop and disseminate gifted education principles. The authors have been involved with this initiative at a number of levels over a ten-year period. Their involvement culminated in a commissioned review of the program. Extensive qualitative data were purposively collected from all stakeholders and the effectiveness of the initiative is examined from a theoretical framework of policy development and excellence. The findings summarised in this proposal, indicate the achievement of excellence at a systemic level was constrained by lack of vision, leadership and commitment to long term achievements of excellence. At a local level evidence exists that excellence can be manifested when there is synchronicity of vision, purpose, decisions, and actions.
Resumo:
There is a growing interest in and support for education for sustainability in Australian schools. Australian Government schemes such as the Australian Sustainable Schools Initiative (AuSSI), along with strategies such as Educating for a Sustainable Future: A National Environmental Education Statement for Australian Schools(NEES(Australian Government and Curriculum Corporation (2005) and Living Sustainably: The Australian Government’s National Action Plan for Education for Sustainability (Australian Government 2009), recognise the need and offer support for education for sustainability in Australian schools. The number of schools that have engaged with AuSSI indicates that this interest also exists within Australian schools. Despite this, recent research indicates that pre-service teacher education institutions and programs are not doing all they can to prepare teachers for teaching education for sustainability or for working within sustainable schools. The education of school teachers plays a vital role in achieving changes in teaching and learning in schools. Indeed, the professional development of teachers in education for sustainability has been identified as ‘the priority of priorities’. Much has been written about the need to ‘reorient teacher education towards sustainability’. Teacher education is seen as a key strategy that is yet to be effectively utilised to embed education for sustainability in schools. Mainstreaming sustainability in Australian schools will not be achieved without the preparation of teachers for this task. The Mainstreaming Sustainability model piloted in this study seeks to engage a range of stakeholder organisations and key agents of change within a system to all work simultaneously to bring about a change, such as the mainstreaming of sustainability. The model is premised on the understanding that sustainability will be mainstreamed within teacher education if there is engagement with key agents of change across the wider teacher education system and if the key agents of change are ‘deeply’ involved in making the change. The model thus seeks to marry broad engagement across a system with the active participation of stakeholders within that system. Such a systemic approach is a way of bringing together diverse viewpoints to make sense of an issue and harness that shared interpretation to define boundaries, roles and relationships leading to a better defined problem that can be acted upon more effectively. Like action research, the systemic approach is also concerned with modelling change and seeking plausible solutions through collaboration between stakeholders. This is important in ensuring that outcomes are useful to the researchers/stakeholders and the system being researched as it creates partnerships and commitments to the outcomes by stakeholder participants. The study reported on here examines whether the ‘Mainstreaming Sustainability’ model might be effective as a means to mainstream sustainability in pre-service teacher education. This model, developed in an earlier study, was piloted in the Queensland teacher education system in order to examine its effectiveness in creating organisational and systemic change. The pilot project in Queensland achieved a number of outcomes. The project: • provided useful insights into the effectiveness of the Mainstreaming Sustainability model in bringing about change while also building research capacity within the system • developed capacities within the teacher education community: o developing competencies in education for sustainability o establishing more effective interactions between decision-makers and other stakeholders o establishing a community of inquiry • changed teaching and learning approaches used in participating teacher education institutions through: o curriculum and resource development o the adoption of education for sustainability teaching and learning processes o the development of institutional policies • improved networks within the teacher education system through: o identifying key agents of change within the system o developing new, and building on existing, partnerships between schools, teacher education institutions and government agencies • engaged relevant stakeholders such as government agencies and non-government organisations to understand and support the change Our findings indicate that the Mainstreaming Sustainability model is able to facilitate organisational and systemic change – over time – if: • the individuals involved have the conceptual and personal capacities needed to facilitate change, that is, to be a key agent of change • stakeholders are engaged as participants in the process of change, not simply as ‘interested parties’ • there is a good understanding of systemic change and the opportunities for leveraging change within systems. In particular, in seeking to mainstream sustainability in pre-service teacher education in Queensland it has become clear that one needs to build capacity for change within participants such as knowledge of education for sustainability, conceptual skills in systemic thinking, action research and organisational change, and leadership skills. It is also of vital importance that key agents of change – those individuals who are ‘hubs’ within a system and can leverage for change across a wide range of the system – are identified and engaged with as early as possible. Key agents of change can only be correctly identified, however, if the project leaders and known participants have clearly identified the boundary to their system as this enables the system, sub-system and environment of the system to be understood. Through mapping the system a range of key organisations and stakeholders will be identified, including government and nongovernment organisations, teacher education students, teacher education academics, and so on. On this basis, key agents of change within the system and sub-system can be identified and invited to assist in working for change. A final insight is that it is important to have time – and if necessary the funding to ‘buy time’ – in seeking to bring about system-wide change. Seeking to bring about system-wide change is an ambitious project, one that requires a great deal of effort and time. These insights provide some considerations for those seeking to utilise the Mainstreaming Sustainability model to bring about change within and across a pre-service teacher education system.