909 resultados para Cation-exchanged
Resumo:
Current software development relies increasingly on non-trivial coordination logic for com- bining autonomous services often running on di erent platforms. As a rule, however, in typical non-trivial software systems, such a coordination layer is strongly weaved within the application at source code level. Therefore, its precise identi cation becomes a major methodological (and technical) problem which cannot be overestimated along any program understanding or refactoring process. Open access to source code, as granted in OSS certi cation, provides an opportunity for the devel- opment of methods and technologies to extract, from source code, the relevant coordination information. This paper is a step in this direction, combining a number of program analysis techniques to automatically recover coordination information from legacy code. Such information is then expressed as a model in Orc, a general purpose orchestration language
Resumo:
The use of cover crops in no-tillage systems (NTS) can significantly improve the soil's fertility. Thus, a study was performed to evaluate changes in chemical properties of soil caused by cover crops in a no-tillage system. The field experiment consisted of the following crop rotation: cover crops/rice/cover crops/rice. The experimental design was in randomized blocks with three replications. Treatments consisted of four cover crops (Brachiaria brizantha(Hochst. ex A. Rich.) Stapf. cv. Marandu, Brachiaria ruziziensis R. Germ. and C.M. Evrard, Panicum maximum Jacq. cv. Colonião, and Pennisetum glaucum(L.) R. Br. cv. BN-2) and fallow (control treatment). Soil samples were collected at the beginning of the summer crop in Oct 2007, Oct 2008 and Oct 2009 at 0-5 cm soil depth. The use of cover crops provided for a significant increase in the level of nutrients, soil organic matter, cation exchange capacity, and base saturation in the soil. Soil fertility improved from the first to second year with the growing of cover crops. The soil under cover crops P. glaucum, B. ruziziensis, and B. brizantha showed higher fertility than the area under fallow.
Resumo:
Three different methods were used to introduce 1.0 wt.% of Pt in bifunctional Pt/MCM-22 zeolite catalysts: ion exchange with Pt(NH3)(4)(2+), incipient wetness impregnation with PtCl6H2 and mechanical mixture with Pt/Al2O3. The Pt dispersion was estimated by transmission electron microscopy and the hydrogenating activity with toluene hydrogenation at 110 degrees C. From these experiments, it can be concluded that with the ion exchanged sample, platinum was located within the inner micropores and on the outer surface, whereas with the impregnated one, platinum was essentially on the outer surface under the form of large particles. With all the samples there is a fast initial decrease in the activity for n-hexane hydroisomerisation at 250 degrees C. With exchanged and impregnated samples, this decrease is followed by a plateau, the activity value being then higher with impregnated sample. For the sample prepared by mechanical mixture a continuous decrease in activity can be observed. All these differences can be related with the distinct locations of Pt.
Resumo:
The catalytic properties of Pt based cordierite foam catalysts have been evaluated in catalytic combustion of toluene (800 ppm in air). The catalysts contain identical Pt content (0.1%) which was introduced by three different ways: Pt ion exchange on MFI zeolite and then coating on the foam; Pt ion exchange after zeolite coating and finally Pt directly wet impregnated on the cordierite foam. The catalytic behaviour of Pt foam based catalysts was compared with that of PtMFI zeolite under powder form. Pt exchanged MFI supported on the cordierite foams present an improvement of activity for toluene combustion of about 50 degrees C on the light off temperature (T-50%). The enhanced performance of the structured catalysts is due not only to the open structure of foams and homogeneous thin layers catalyst deposited on their cell walls, but also to the fact that the size and location of Pt particles present in MFI zeolite are changed during the dipping step. Indeed, as prepared Pt samples and those used in the preparation of the slurry were observed by transmission electron microscopy revealing that the chemical interaction of PtMFI zeolite with the binder and detergent, both present in the slurry, leads to an increase of Pt particles size which were found to migrate from internal pores to the external surface of zeolite crystallites thereby increasing catalytic activity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A copper C(2)-symmetric bis(oxazoline), CuBox, was introduced in two forms of commercial Y zeolite: a sodium form (NaY) and an ultrastable form (NaUSY). CuBox was introduced by first partially exchanging the sodium cations of both zeolites for copper and then by refluxing the obtained materials with a solution of bis(oxazoline) (Box). Two different loadings were prepared for each form of zeolite. The materials were characterized by copper ICP-AES, elemental analysis, XPS, FTIR, TG, and nitrogen adsorption isotherms at -196 degrees C. Evidence for Box ligand location in the supercages of NaY and NaUSY zeolites and its coordination to the exchanged copper(II) was obtained by the several techniques used. The materials were all active in the cyclopropanation of styrene with ethyldiazoacetate at room temperature and diastereoselective toward trans cydopropanes. Although the materials containing Box showed low enantioselectivities, their catalytic activities were higher than the parent copper exchanged zeolites, and did not decrease with reuse, at least during three consecutive cycles.
Resumo:
The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.
Resumo:
Novel ionic liquids containing ampicillin as an active pharmaceutical ingredient anion were prepared with good yields by using a new, efficient synthetic procedure based on the neutralization of a moderately basic ammonia solution of ampicillin with different organic cation hydroxides. The relevant physical and thermal properties of these novel ionic liquids based on ampicillin were also evaluated.
Resumo:
Valproic acid (2-propyl pentanoic acid) is a pharmaceutical drug used for treatment of epileptic seizures absence, tonic-clonic (grand mal), complex partial seizures, and mania in bipolar disorder [1]. Valproic acid is a slightly soluble in water and therefore as active pharmaceutical ingredient it is most commonly applied in form of sodium or magnesium valproate salt [1].However the list of adverse effects of these compounds is large and includes among others: tiredness, tremor, sedation and gastrointestinal disturbances [2]. Ionic liquids (ILs) are promising compounds as Active Pharmaceutical Ingredients (APIs)[3]. In this context, the combinations of the valproate anion with appropriate cation when ILs and salts are formed can significantly alter valproate physical, chemical and thermal properties.[4] This methodology can be used for drug modification (alteration of drug solubility in water, lipids, bioavailability, etc)[2] and therefore can eliminate some adverse effect of the drugs related to drug toxicity due for example to its solubility in water and lipids (interaction with intestines). Herein, we will discuss the development of ILs based on valproate anion (Figure 1) prepared according a recent optimized and sustainable acid-base neutralization method [4]. The organic cations such as cetylpyridinium, choline and imidazolium structures were selected based on their biocompatibility and recent applications in pharmacy [3]. All novel API-ILs based on valproate have been studied in terms of their physical, chemical (viscosity, density, solubility) and thermal (calorimetric studies) properties as well as their biological activity.
Resumo:
Ionic Liquids (ILs) are ionic compounds that possess melting temperature below 100ºC and they have been a topic of great interest since the mid-1990s due to their unique properties. The range of IL uses has been broadened, due to a significant increase in the variety of physical, chemical and biological ILs properties. They are now used as Active Pharmaceutical Ingredients (APIs) and recent interests are focused on their application as innovative solutions in new medical treatment and delivery options.1 In this work, our principal objective was the synthesis and investigation of physicochemical and medical properties of ionic liquids (ILs) and organic salts from ampicillin. This approach is of huge interest in pharmaceutical industry as cation and anion composition of ILs and organic salts can greatly alter their desired properties, namely the melting temperature and even synergistic effects can be obtained.2,3 For the synthesis of these compounds we used a recently developed method proposed by Ohno et al.4 for the preparation of quaternary ammonium and phosphonium hydroxides, that were neutralized by ampicillin. After purification we obtained pure ILs and salts in good yields. These ILs shows good antimicrobial and antifungal activities. As it is well known that some ionic liquids containing phosphonium and ammonium cation also shows anti-cancer activity1,5 we also decided to study these compounds against some cancer cell lines.
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
Mestrado em Engenharia Informática
Resumo:
The compounds [mPTA][CoCl4] (1, mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [CoCl(H2O)(DION)(2)][BF4] (2, DION = 1,10-phenanthroline-5,6-dione), [Zn(DION)(2)]Cl-2 (3) and [ZnCl(O-PTA=O)(DION)][BF4] (4) were synthesized by reaction of CoCl2 with [mPTA]I or DION and ZnCl2 with DION or 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O) and DION, respectively. All complexes are water soluble and have been characterized by IR, far-IR, H-1, C-13 and P-31{H-1} NMR spectroscopy, ESI-MS, elemental analyses and single-crystal X-ray diffraction structural analysis (for 1). They were screened against the human tumour cell lines HCT116, HepG2 and MCF7. Complexes 2 and 3 exhibit the highest in vitro cytotoxicity and show lower cytotoxic activities in normal human fibroblast cell line than in HCT116 tumour cell line, which demonstrates their slight specificity for this type of tumour cell.
Resumo:
New rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
Resumo:
Scientific evidence has shown an association between organochlorine compounds (OCC) exposure and human health hazards. Concerning this, OCC detection in human adipose samples has to be considered a public health priority. This study evaluated the efficacy of various solid-phase extraction (SPE) and cleanup methods for OCC determination in human adipose tissue. Octadecylsilyl endcapped (C18-E), benzenesulfonic acid modified silica cation exchanger (SA), poly (styrene-divinylbenzene (EN) and EN/RP18 SPE sorbents were evaluated. The relative sample cleanup provided by these SPE columns was evaluated using gas chromatography with electron capture detection (GC–ECD). The C18-E columns with strong homogenization were found to provide the most effective cleanup, removing the greatest amount of interfering substance, and simultaneously ensuring good analyte recoveries higher than 70%. Recoveries>70% with standard deviations (SD)<15% were obtained for all compounds under the selected conditions. Method detection limits were in the 0.003–0.009 mg/kg range. The positive samples were confirmed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The highest percentage found of the OCC in real samples corresponded to HCB, o,p′-DDT and methoxychlor, which were detected in 80 and 95% of samples analyzed respectively. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.