979 resultados para Blast-furnace
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
This paper discusses the effects of temperature, addition of ferro-silicon and fluxing agents for the production of high carbon ferro-chromium by self-reducing process. The use of self-reducing agglomerates for ferro-alloys production is becoming an emerging processing technology due to lowering the electric energy consumption and improving the metal recovery in comparison with traditional ones. The self-reducing pellets were composed by chromite, petroleum coke, cement and small (0.1% - 2%) addition of ferro-silicon. The slag composition was adjusted by addition of fluxing agents. The reduction of pellets was carried out at 1773K (1500 degrees C), 1823K (1550 degrees C) and 1873K (1600 degrees C) by using induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). By increasing temperature from 1773K to 1823K large effect on the reduction time was observed. It decreased from 30 minutes to 10 minutes, for reaching around 0.98 reduction fraction. No significant effect on reduction time was observed when the reduction temperature was increased from 1823K to 1873K. At 1773K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without this addition. The addition of fluxing agents (silica and hydrated lime) has effect on reduction time (inverse relationship) and the pellets become less porous after reduction.
Resumo:
Directional solidification of molten metallurgical-grade Si was carried out in a vertical Bridgman furnace. The effects of changing the mold velocity from 5 to 110 mu m seconds(-1) on the macrosegregation of impurities during solidification were investigated. The macrostructures of the cylindrical Si ingots obtained in the experiments consist mostly of columnar grains parallel to the ingot axis. Because neither cells nor dendrites can be observed on ingot samples, the absence of precipitated particles and the fulfillment of the constitutional supercooling criterion suggest a planar solid-liquid interface for mold velocities a parts per thousand currency sign10 mu m seconds(-1). Concentration profiles of several impurities were measured along the ingots, showing that their bottom and middle are purer than the metallurgical Si from which they solidified. At the ingot top, however, impurities accumulated, indicating the typical normal macrosegregation. When the mold velocity decreases, the macrosegregation and ingot purity increase, changing abruptly for a velocity variation from 20 to 10 mu m seconds(-1). A mathematical model of solute transport during solidification shows that, for mold velocities a parts per thousand yen20 mu m seconds(-1), macrosegregation is caused mainly by diffusion in a stagnant liquid layer assumed at the solid-liquid interface, whereas for lower velocities, macrosegregation increases as a result of more intense convective solute transport.
Resumo:
This work analyses pellets prepared with iron ore that has been mechanically activated by high energy ball milling. Pellet feed iron ore was submitted to high-energy ball milling for 60 minutes, and the resulting material was analysed through measurements of particle size and specific surface area, as well as X-ray diffraction. Pellets were prepared from this material. The pellets were heated at temperatures ranging from 1000 to 1250 degrees C in a muffle furnace, and submitted to the maximum temperature during 10 - 12 minutes. The samples were then tested regarding crushing strength, densification and porosity, and were examined in a scanning electronic microscope. The results were compared to those obtained with similar samples made from non-milled pellet feed. It has been shown that through high-energy ball milling of iron ore it is possible to achieve pellets presenting high densification and compressive strength at firing temperatures lower than the usual ones.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A solar energy powered failing film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO(2), making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO(2) from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector. and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Tree-rings have frequently been used for dating of trees and to determine annual growth increments and forest dynamics, but little is known in tropical conditions about their utilization for environmental monitoring. This paper presents the results of Araucaria columnaris tree-ring characterization by wood anatomy and X-ray densitometric analysis and the determination of Pb concentration. Core samples from twelve araucaria trees were extracted from two sites exposed to air pollution due to intense traffic of vehicles and industrial activities. The tree-rings distinctly presented radial variation in early-latewood thickness and density, and characteristics of juvenile and mature wood. Anatomical and X-ray densitometric analysis were useful to delimit the tree-ring boundaries and to date the tree-rings, as well as to prove the annual formation. The lead concentration in annual araucaria tree-rings, analyzed with graphite furnace atomic absorption spectrometry, indicated the seasonal presence of the heavy metal in the environment during the 30 years studied, although the Pb did not affect tree growth. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches` broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.
Resumo:
This study investigated the influence of heat treatment on the chemical composition of Eucalyptus saligna and Pinus caribaea var. hondurensis woods to understand its role in wood processing. E. saligna and P. caribaea var. hondurensis woods were treated in a laboratorial electric furnace at 120, 140, 160 and 180 degrees C to induce their heat treatment. The chemical composition of the resulting products and those from original wood were determined by gas chromatography. Eucalyptus and Pinus showed a significant reduction in arabinose, manose, galactose and xylose contents when submitted to increasing temperatures. No significant alteration in glucose content was observed. Lignin content, however, increased during the heat process. There was a significant reduction in extractive content for Eucalyptus. On the other hand, a slight increase in extractive content has been determined for the Pinus wood. and that only for the highest temperature. These different behaviors can be explained by differences in chemical constituents between softwoods and hardwoods. The results obtained in this study provide important information for future research and utilization of thermally modified wood. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The lack of a clear correlation between the levels of antibody to pertussis antigens and protection against disease lends credence to the possibility that cell-mediated immunity provides primary protection against disease. This phase I comparative trial had the aim of comparing the in vitro cellular immune response and anti-pertussis toxin (anti-PT) immunoglobulin G (IgG) titers induced by a cellular pertussis vaccine with low lipopolysaccharide (LPS) content (wP(low) vaccine) with those induced by the conventional whole-cell pertussis (wP) vaccine. A total of 234 infants were vaccinated at 2, 4, and 6 months with the conventional wP vaccine or the wP(low) vaccine. Proliferation of CD3(+) T cells was evaluated by flow cytometry after 6 days of peripheral blood mononuclear cell culture with stimulation with heat-killed Bordetella pertussis or phytohemagglutinin (PHA). CD3(+), CD4(+), CD8(+), and T-cell receptor gamma delta-positive (gamma delta(+)) cells were identified in the gate of blast lymphocytes. Gamma interferon, tumor necrosis factor alpha, interleukin-4 (IL-4), and IL-10 levels in super-natants and serum anti-PT IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). The net percentage of CD3(+) blasts in cultures with B. pertussis in the group vaccinated with wP was higher than that in the group vaccinated with the wP(low) vaccine (medians of 6.2% for the wP vaccine and 3.9% for the wP(low) vaccine; P = 0.029). The frequencies of proliferating CD4(+), CD8(+), and gamma delta(+) cells, cytokine concentrations in supernatants, and the geometric mean titers of anti-PT IgG were similar for the two vaccination groups. There was a significant difference between the T-cell subpopulations for B. pertussis and PHA cultures, with a higher percentage of gamma delta(+) cells in the B. pertussis cultures (P < 0.001). The overall data did suggest that wP vaccination resulted in modestly better specific CD3(+) cell proliferation, and gamma delta(+) cell expansions were similar with the two vaccines.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.