977 resultados para Applied Load
Resumo:
There is no consensus on the relevance of factors that influence gender differences in the behavior of muscles. Some studies have reported a relationship between muscle tension and amplitude of the vestibular evoked myogenic potential; others, that results depend on which muscles are studied or on how much load is applied. Aims: This study aims to compare vestibular evoked myogenic potential parameters between genders in young individuals. Methods: Eighty young adults were selected - 40 men and 40 women. Stimuli were averaged tone-bursts at 500 Hz, 90 dBHL intensity, and a 10-1000 Hz bandpass filter with amplification of 10-25 microvolts per division. The recordings were made in 80 ms windows. Study type: An experimental and prospective study. Results: No significant gender differences were found in wave latency - p = 0.19 and p = 0.50 for waves P13 and N23, respectively. No differences were found in amplitude values - p = 0.28 p = 0.40 for waves P13 and N23, respectively. Conclusion: There were no gender differences in latency and amplitude factors; the sternocleidomastoid muscle strain was monitored during the examination.
Resumo:
Objectives: The aim of this study was to compare the fracture strength of three techniques used to re-attach tooth fragments in sound and endodontically treated fractured teeth with or without fiber post placement. Material and methods: Ninety human lower incisors were randomly divided into three groups of 30 teeth each. In group A teeth were not subjected to endodontic treatment; while teeth from groups B and C were endodontically treated and the pulp chamber restored with a composite resin. All teeth were fractured by an axial load applied to the buccal area in order to obtain tooth fragments. Teeth from each group were then divided into three subgroups, according to the re-attachment technique: bonded-only, buccal-chamfer and circumferential chamfer. Before the re-attachment procedures, fiber posts were placed in teeth from group C using dual cure resin luting cement (Duo-Link). All teeth (groups A-C) had the fragments re-attached using a same dual cure resin luting cement. in the bonded-only group, no additional preparation was made. After re-attachment of the fragment, teeth from groups buccal and circumferential chamfer groups had a 1.0 mm depth chamfer placed in the fracture line either on buccal surfaceor along the buccal and lingual surfaces, respectively. increments of microhybid composite resin (Tetric Ceram) were used in subgroups buccal chamfer and circumferential chamfer to restore the chamfer. The specimens were loaded until fracture in the same pre-determined area. The force required to detach each fragment was recorded and the data was subjected to a three-way analysis of variance where factors Group and Re-attachment technique are independent measures and Time of fracture is a repeated measure factor (first and second) and Tukey`s test (alpha = 0.05). Results: The main factors Re-attachment technique (p = 0.04) and Time of fracture (p = 0.02) were statistically significant. The buccal and circumferential chamfer techniques were statistically similar (p > 0.05) and superior to the bonded-only group (p < 0.05). The first time of fracture was statistically superior to second time of fracture (p < 0.001). Conclusions: The use of fiber post is not necessary for the reinforcement of the tooth structure in re-attachment of endodontically treated teeth. When bonding a fractured fragment, the buccal or circumferential re-attachment techniques should be preferable in comparison with the simple re-attachment without any additional preparation. None of the techniques used for re-attachment restored the fracture strength of the intact teeth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts` elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post`s long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.
Resumo:
Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Objectives: This study tested the following null hypotheses: (1) there is no difference in resin-dentine bond strength when an experimental glutaraldehyde primer solution is added prior to bonding procedures and (2) there is no difference in resin-dentine bond strength when experimental glutaraldehyde/adhesive system is applied under dry or wet demineralized dentine conditions. Methods: Extracted human maxillary third molars were selected. Flat, mid-coronal dentine was exposed for bonding and four groups were formed. Two groups were designated for the dry and two for the wet dentine technique: DRY: (1) Group GD: acid etching + glutaraldehyde primer (primer A) + HEMA/ethanol primer (primer B)-under dried dentine + unfilled resin; (2) Group D: the same as GD, except for primer A application; WET: (3) Group GW: the same as GD, but primer B was applied under wet dentine condition; (4) Group W: the same as GW, except for primer A application. The bonding resin was light-cured and a resin core was built up on the adhesive layer. Teeth were then prepared for microtensile bond testing to evaluate bond strength. The data obtained were submitted to ANOVA and Tukey`s test (alpha = 0.05). Results: Glutaraldehyde primer application significantly improved resin-dentine bond strength. No significant difference was observed when the same experimental adhesive system was applied under either dry or wet dentine conditions. These results allow the first null hypothesis to be rejected and the second to be accepted. Conclusion: Glutaraldehyde may affect demineralized dentine properties leading to improved resin bonding to wet and dry substrates. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this in vitro study was to analyze the stress distribution on components of a mandibular-cantilevered implant-supported prosthesis with frameworks cast in cobalt-chromium (Co-Cr) or palladium-silver (Pd-Ag) alloys, according to the cantilever length. Frameworks were fabricated on (Co-Cr) and (Pd-Ag) alloys and screwed into standard abutments positioned on a master-cast containing five implant replicas. Two linear strain gauges were fixed on the mesial and distal aspects of each abutment to capture deformation. A vertical static load of 100 N was applied to the cantilever arm at the distances of 10, 15, and 20 mm from the center of the distal abutment and the absolute values of specific deformation were recorded. Different patterns of abutment deformation were observed according to the framework alloy. The Co-Cr alloy framework resulted in higher levels of abutment deformation than the silver-palladium alloy framework. Abutment deformation was higher with longer cantilever extensions. Physical properties of the alloys used for framework interfere with abutment deformations patterns. Excessively long cantilever extensions must be avoided. To cite this article:Jacques LB, Moura MS, Suedam V, Souza EAC, Rubo JH. Effect of cantilever length and framework alloy on the stress distribution of mandibular-cantilevered implant-supported prostheses.Clin. Oral Impl. Res. 20, 2009; 737-741.doi: 10.1111/j.1600-0501.2009.01712.x.
Resumo:
Clinical feasibility of mandibular implant overdenture retainers submitted to immediate load Introduction: Millions of people around the world do not have access to the benefits of osseointegration. Treatments involving oral rehabilitation with overdentures have been widely used by specialists in the oral medicine field. This is an alternative therapy for retention and stability achievement in total prosthesis with conventional treatment, and two implants are enough to establish a satisfactory overdenture. Objective: The objectives of the study were to evaluate 16 patients of both sexes, with an average age of 47.4 +/- 4 years, using electromyographic analysis of masseter and temporal muscles and analyse the increase of incisive and molar maximal bite force with their existing complete dentures and following mandibular implant overdenture therapy to assess the benefits of this treatment. Materials and methods: For these tests, the Myosystem-BR1 electromyograph and the IDDK Kratos dynamometer were used. Statistical analysis was performed using the repeated measures test (SPSS 17.0). Results: A decrease in electromyographic activity during the rest, lateral and protrusion movements and increase of the maximal incisive and molar bite force after 15 months with a mandibular implant overdenture was observed. Conclusion: All the patients in this study reported a considerable improvement in the masticatory function and prostheses stability following treatment. It is possible to propose that the use of mandibular implants overdenture should become the selected treatment for totally edentulous patients to facilitate oral function and quality of life.
Resumo:
There is no consensus in literature regarding the best plan for prosthetic rehabilitation with partial multiple adjacent implants to minimize stress generated in the bone-implant interface. The aim of this study was to evaluate the biomechanical behavior of cemented fixed partial dentures, splinted and nonsplinted, on Morse taper implants and with different types of coating material (ceramic and resin), using photoelastic stress analysis. A photoelastic model of an interposed edentulous space, missing a second premolar and a first molar, and rehabilitated with 4 different types of cemented crowns and supported by 2 adjacent implants was used. Groups were as follows: UC, splinted ceramic crowns; IC, nonsplinted ceramic crowns; UR, splinted resin crowns; and IR, nonsplinted resin crowns. Different vertical static loading conditions were performed: balanced occlusal load, 10 kgf; simultaneous punctiform load on the implanted premolar and molar, 10 kgf; and alternate punctiform load on the implanted premolar and molar, 5 kgf. Changes in stress distribution were analyzed in a polariscope, and digital photographs were taken of each condition to allow comparison of stress pattern distribution around the implants. Cementation of the fixed partial dentures generated stresses between implants. Splinted restorations distributed the stresses more evenly between the implants than nonsplinted when force was applied. Ceramic restorations presented better distribution of stresses than resin restorations. Based on the results obtained, it was concluded that splinted ceramic restorations promote better stress distribution around osseointegrated implants when compared with nonsplinted crowns; metal-ceramic restorations present less stress concentration and magnitude than metal-plastic restorations.
Resumo:
This special issue presents an excellent opportunity to study applied epistemology in public policy. This is an important task because the arena of public policy is the social domain in which macro conditions for ‘knowledge work’ and ‘knowledge industries’ are defined and created. We argue that knowledge-related public policy has become overly concerned with creating the politico-economic parameters for the commodification of knowledge. Our policy scope is broader than that of Fuller (1988), who emphasizes the need for a social epistemology of science policy. We extend our focus to a range of policy documents that include communications, science, education and innovation policy (collectively called knowledge-related public policy in acknowledgement of the fact that there is no defined policy silo called ‘knowledge policy’), all of which are central to policy concerned with the ‘knowledge economy’ (Rooney and Mandeville, 1998). However, what we will show here is that, as Fuller (1995) argues, ‘knowledge societies’ are not industrial societies permeated by knowledge, but that knowledge societies are permeated by industrial values. Our analysis is informed by an autopoietic perspective. Methodologically, we approach it from a sociolinguistic position that acknowledges the centrality of language to human societies (Graham, 2000). Here, what we call ‘knowledge’ is posited as a social and cognitive relationship between persons operating on and within multiple social and non-social (or, crudely, ‘physical’) environments. Moreover, knowing, we argue, is a sociolinguistically constituted process. Further, we emphasize that the evaluative dimension of language is most salient for analysing contemporary policy discourses about the commercialization of epistemology (Graham, in press). Finally, we provide a discourse analysis of a sample of exemplary texts drawn from a 1.3 million-word corpus of knowledge-related public policy documents that we compiled from local, state, national and supranational legislatures throughout the industrialized world. Our analysis exemplifies a propensity in policy for resorting to technocratic, instrumentalist and anti-intellectual views of knowledge in policy. We argue that what underpins these patterns is a commodity-based conceptualization of knowledge, which is underpinned by an axiology of narrowly economic imperatives at odds with the very nature of knowledge. The commodity view of knowledge, therefore, is flawed in its ignorance of the social systemic properties of ��knowing’.