987 resultados para 368
Resumo:
Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The crystallographic tilt of the lateral epitaxial overgrown (LEO) GaN on sapphire Substrate with SiNx mask is investiaated by double crystal X-ray diffraction. Two wing peaks beside the GaN 0002 peak can be observed for the as-grown LEO GaN. During the selective etching of SiNx mask, each wing peak splits into two peaks, one of which disappears as the mask is removed, while the other remains unchanged. This indicates that the crystallographic tilt of the overgrown region is caused not only by the plastic deformation resulted from the bending of threading dislocations, but by the non-uniformity elastic deformation related with the GaN, SiNx interfacial forces. The widths of these two peaks are also studied in this paper. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report the effect of InchiGa1-chiAs (0 less than or equal to chi less than or equal to0.4) capping layer on photoluminescence (PL) properties of 1.3 mum wavelength self-assembled InAs quantum islands, which are formed via depositing 3.5 monolayers (ML) InAs on GaAs (1 0 0) substrate by molecular beam epitaxy (MBE). Compared with the InchiGa1-chiAs capping layer containing a larger In mole fraction chi greater than or equal to0.2 and the GaAs capping layer (chi = 0), the InAs islands covered by the In0.1Ga0.9As layer show PL with lower emission energy, narrower full-width at half-maximum (FWHM), and quite stronger intensity. The PL peak energy and FWHM become more temperature dependent with the increase of In content in the InchiGa1-chiAs capping layer (chi greater than or equal to0.2), while the InAs islands covered by the In0.1Ga0.9As layer is much less temperature sensitive. In addition, the InAs islands covered by the In0.1Ga0.9As capping layer show room temperature PL wavelength at about 1.3 mum. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Raman scattering measurement has been used to study the residual strains in the thin 3C-SiC/Si(001) epilayers with a variation of film thickness from 0.1 to 1.2 mu m. which were prepared by chemical vapor deposition (CVD)growth. Two methods have been exploited to figure our the residual strains and the exact LO bands. The final analyzing results show that residual strains exist in the 3C-SiC epilayers. The average stress is 1.3010 GPa, and the relative change of the lattice constant is 1.36 parts per thousand. Our measurements also show that 3C-SiC phonons are detectable even for the samples with film thickness in the range of 0.1 to 0.2 mu m. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Photoluminescence measurements were performed on p-type co-doping effects of C, As, and Mg in GaN. The dopants were incorporated into GaN by ion implantation performed at 77 K. We find that the 3.42 eV luminescence line is sensitive to hole concentration, and propose that after cartful calibration the 3.42 eV line may be used as a probe to measure hole concentration in GaN. Simply doping one kind of accepters will not result in holes, while co-doping can substantially improve p-type doping efficiency. As + C and As + Mg co-doping induce an acceptor level of 180 meV above the valence band. Mg + C co-doping is the most promising method for p-type doping, the related acceptor level is determined to be as shallow as 130 meV. The improvement of the doping efficiency by co-doping is probably due to the decrease of the acceptor ionization energy. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Within the framework of the effective-mass envelope-function theory, the field-dependent intersubband optical properties of a Al0.4Ga0.6As/Al0.2Ga0.8As/GaAs step quantum well are investigated theoretically based on the periodic boundary condition. A very large Stark shift occurs when the lowest subband electron remains confined to the small well while the higher subband electron confined to the big well. The optical nonlinearity in a step well due to resonant intersubband transition (ISBT) is analyzed using a density-matrix approach. The second-harmonic generation coefficient chi(2 omega)((2)) and nonlinear optical rectification chi(0)((2)) have also been investigated theoretically. The results show that the ISBT in a step well can generate very large second order optical nonlinearities, chi(0)((2)) and chi(2 omega)((2)) can be tuned by the electric field over a wide range.
Resumo:
A systematic investigation of nitrides R3F29-xCrxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The nitrogen concentration in the nitride R3Fe29-xCrxNy was determined to be y = 4. Nitrogenation leads to a relative volume expansion of about 5.3%. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. In average, the increase of Curie temperature upon nitrogenation is about 200 K, compared with its parent compound. The nitrogenation also results in a remarkable improvement in the saturation magnetization and anisotropy fields for R3Fe29-x CrxN4 at 4.2 K and room temperature, compared with their parent compounds. A spin reorientation of Nd3Fe24.5Cr4.5N4 occurs at around 368 K, which is 138 K higher than that of Nd3F24.5Cr4.5. Magnetohistory effects of R3Fe29-xCrxN4 (R = Nd and Sm) are observed in a low field of 0.04 T. First-order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of around 3.0 T at 4.2 K. After nitrogenation the easy magnetization direction of Sm3Fe24.0C5.0 is changed from the easy-cone structure to the uniaxial. The excellent intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance permanent magnets.
Resumo:
通过野外模拟降雨试验,研究了施用SP对黄土坡面产流、产沙的影响,并对实验数据进行数学模拟,建立了SP施用量与产流、产沙强度间的关系模型。结果表明:SP施用量与产流时间、平均产流强度呈二次函数相关关系,与产沙强度呈线性负相关关系。SP用量在0~2.42 g/m2之间时,能够延缓坡面产流,用量为1.21 g/m2时延缓产流效果最明显;用量介于0~3.31 g/m2之间时,能够增加土壤入渗,减少坡面产流量,用量1.65 g/m2的增渗减流效果最佳;施用SP后,能够减少坡面输沙强度,且用量越大,减沙效果越明显。SP可影响坡面产流过程,用量1.8 g/m2时,能够减小产流初期径流强度增幅,用量为3.6 g/m2时,其产流过程线与对照极接近,而施用量增加到5.4 g/m2时,产流强度明显增大。SP对坡面产沙过程的影响表现为:随施用量增大,产沙强度峰值呈逐步减小的变化趋势。