954 resultados para zygotic embryos
Resumo:
In vitro culture for bovine embryos is largely not optimal. Our study was to determine the components necessary for early embryo development. In experiment 1, IVF embryos were cultured for two days in CR1aa medium containing sodium citrate and BSA from two sources (Sigma vs. ICPbio), subsequently for additional five days with cumulus monolayer in 10% FBS CR1aa. We found that supplementation with both Sigma-BSA and sodium citrate significantly increased total blastocyst (BL) development compared with the ICPbio-BSA groups (37% vs. 19-21%), and enhanced the total number of high quality (C1 BL, IETS standard) blastocysts (26% vs. 11-17%) (P < 0.05). In experiment 2 with serum free and/or somatic free culture, we found that CR1aa culture can support a comparable embryo development with a supplement of Sigma BSA. The addition of sodium citrate did not increase blastocyst development in either the Sigma-BSA or the ICPbio-BSA groups. An inferior blastocyst development occurring in ICPbio-BSA culture (1-3%) could be rescued by culture in CRlaa supplemented with 10% FBS (29%), more importantly, by culture in CR1aa with a replacement of Sigma BSA (24%) (P <0.05). C1 blastocysts rescued by FBS and Sigma BSA in ICPbio-BSA culture possessed indistinguishable morphology to embryos developed in a Sigma-BSA, FBS and somatic co-culture system, showing similar cell number/blastocyst (129-180, P > 0.05). Our study found a beneficial effect of sodium citrate and BSA on the in vitro development of bovine IVF embryos during co-culture. We also determined that differential embryotrophic factor(s) contained in BSA and serum, probably not sodium citrate, is necessary for promoting competent morula and blastocyst development in cattle.
Resumo:
A fundamental task in developmental biology is to understand the molecular mechanisms governing early embryogenesis. The aim of this study was to understand the developmental role of a putative basic helix-loop-helix (b-HLH) transcription factor, twist, during mouse embryogenesis.^ twist was originally identified in Drosophila as one of the zygotic genes, including snail, that were required for dorsal-ventral patterning. In Drosophila embryogenesis, twist is expressed in the cells of the ventral midline destined to form mesoderm. In embryos lacking twist expression, their ventral cells fail to form a ventral furrow and subsequently no mesoderm is formed.^ During mouse embryogenesis, twist is expressed after initial mesoderm formation in both mesoderm and cranial neural crest cell derivatives. To study the role of twist in vivo, twist-null embryos were generated by gene targeting. Embryos homozygous for the twist mutation die at midgestation. The most prominent phenotype in the present study was a failure of the cranial neural tube to close (exencephaly). twist-null embryos also showed defects in head mesenchyme, branchial arches, somites, and limb buds.^ To understand whether twist functions cell-autonomously and to investigate how twist-null cells interact with wild-type cells in vivo, twist chimeras composed of both twist-null and wild-type cells marked by the expression of the lacZgene were generated. Chimeric analysis revealed a correlation between the incidence of exencephaly and the contribution of the underlying twist-null head mesenchyme, thus strongly suggesting that twist-expressing head mesenchyme is required for the closure of the cranial neural tube. These studies have identified twist as a critical regulator for the mesenchymal fate determination within the cranial neural crest lineage. Most strikingly, twist-null head mesenchyme cells were always segregated from wild-type cells, indicating that the twist mutation altered the adhesive specificity of these cells. Furthermore, these results also indicated that twist functions cell-autonomously in the head, arch, and limb mesenchyme but non-cell-autonomously in the somites. Taken together, these studies have established the essential role of twist during mouse embryogenesis. ^
Resumo:
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol/g FM/h) than in those of L. vulgaris (31.8 ± 3.3 µmol/g FM/h). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmol ATP/g FM/h, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.
Resumo:
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 µatm) and at elevated levels (750 and 1400 µatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 µatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 µatm and 1400 µatm pCO2, respectively, than at 390 µatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Resumo:
To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field.
Resumo:
To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field.
Resumo:
The development of reliable clonal propagation technologies is a requisite for performing Multi-Varietal Forestry (MVF). Somatic embryogenesis is considered the tissue culture based method more suitable for operational breeding of forest trees. Vegetative propagation is very difficult when tissues are taken from mature donors, making clonal propagation of selected trees almost impossible. We have been able to induce somatic embryogenesis in leaves taken from mature oak trees, including cork oak (Quercus suber). This important species of the Mediterranean ecosystem produces cork regularly, conferring to this species a significant economic value. In a previous paper we reported the establishment of a field trial to compare the growth of plants of somatic origin vs zygotic origin, and somatic plants from mature trees vs somatic plants from juvenile seedlings. For that purpose somatic seedlings were regenerated from five selected cork oak trees and from young plants of their half-sib progenies by somatic embryogenesis. They were planted in the field together with acorn-derived plants of the same families. After the first growth period, seedlings of zygotic origin doubled the height of somatic seedlings, showing somatic plants of adult and juvenile origin similar growth. Here we provide data on height and diameter increases after two additional growth periods. In the second one, growth parameters of zygotic seedlings were also significantly higher than those of somatic ones, but there were not significant differences in height increase between seedlings and somatic plants of mature origin. In the third growth period, height and diameter increases of somatic seedlings cloned from the selected trees did not differ from those of zygotic seedlings, which were still higher than data from plants obtained from somatic embryos from the sexual progeny. Therefore, somatic seedlings from mature origin seem not to be influenced by a possible ageing effect, and plants from somatic embryos tend to minimize the initial advantage of plants from acorns
Resumo:
The Drosophila gene bicoid functions as the anterior body pattern organizer of Drosophila. Embryos lacking maternally expressed bicoid fail to develop anterior segments including head and thorax. In wild-type eggs, bicoid mRNA is localized in the anterior pole region and the bicoid protein forms an anterior-to-posterior concentration gradient. bicoid activity is required for transcriptional activation of zygotic segmentation genes and the translational suppression of uniformly distributed maternal caudal mRNA in the anterior region of the embryo. caudal genes as well as other homeobox genes or members of the Drosophila segmentation gene cascade have been found to be conserved in animal evolution. In contrast, bicoid homologs have been identified only in close relatives of the schizophoran fly Drosophila. This poses the question of how the bicoid gene evolved and adopted its unique function in organizing anterior–posterior polarity. We have cloned bicoid from a basal cyclorrhaphan fly, Megaselia abdita (Phoridae, Aschiza), and show that the gene originated from a recent duplication of the direct homolog of the vertebrate gene Hox3, termed zerknüllt, which specifies extraembryonic tissues in insects.
Resumo:
SMAD2 is a member of the transforming growth factor β and activin-signaling pathway. To examine the role of Smad2 in postgastrulation development, we independently generated mice with a null mutation in this gene. Smad2-deficient embryos die around day 7.5 of gestation because of failure of gastrulation and failure to establish an anterior–posterior (A-P) axis. Expression of the homeobox gene Hex (the earliest known marker of the A-P polarity and the prospective head organizer) was found to be missing in Smad2-deficient embryos. Homozygous mutant embryos and embryonic stem cells formed mesoderm derivatives revealing that mesoderm induction is SMAD2 independent. In the presence of wild-type extraembryonic tissues, Smad2-deficient embryos developed beyond 7.5 and up to 10.5 days postcoitum, demonstrating a requirement for SMAD2 in extraembryonic tissues for the generation of an A-P axis and gastrulation. The rescued postgastrulation embryos showed malformation of head structures, abnormal embryo turning, and cyclopia. Our results show that Smad2 expression is required at several stages during embryogenesis.
Resumo:
We previously isolated a novel rat cDNA encoding a basic helix–loop–helix transcription factor named Relax, whose expression in the developing central nervous system is strictly limited to discrete domains containing precursor cells. The timing of Relax expression coincides with neuronal differentiation. To investigate the involvement of Relax in neurogenesis we tested whether Relax activated neural genes in the ectoderm by injecting Relax RNA into Xenopus embryos. We demonstrate that ectopic Relax expression induces a persistent enlargement of the neural plate and converts presumptive epidermal cells into neurons. This indicates that Relax, when overexpressed in Xenopus embryos, has a neuronal fate-determination function. Analyses both of Relax overexpression in the frog and of the distribution of Relax in the rat neural tube strongly suggest that Relax is a neuronal fate-determination gene.
Resumo:
Vegetable oils that contain fatty acids with conjugated double bonds, such as tung oil, are valuable drying agents in paints, varnishes, and inks. Although several reaction mechanisms have been proposed, little is known of the biosynthetic origin of conjugated double bonds in plant fatty acids. An expressed sequence tag (EST) approach was undertaken to characterize the enzymatic basis for the formation of the conjugated double bonds of α-eleostearic (18:3Δ9cis,11trans,13trans) and α-parinaric (18:4Δ9cis,11trans,13trans,15cis) acids. Approximately 3,000 ESTs were generated from cDNA libraries prepared from developing seeds of Momordica charantia and Impatiens balsamina, tissues that accumulate large amounts of α-eleostearic and α-parinaric acids, respectively. From ESTs of both species, a class of cDNAs encoding a diverged form of the Δ12-oleic acid desaturase was identified. Expression of full-length cDNAs for the Momordica (MomoFadX) and Impatiens (ImpFadX) enzymes in somatic soybean embryos resulted in the accumulation of α-eleostearic and α-parinaric acids, neither of which is present in untransformed soybean embryos. α-Eleostearic and α-parinaric acids together accounted for as much as 17% (wt/wt) of the total fatty acids of embryos expressing MomoFadX. These results demonstrate the ability to produce fatty acid components of high-value drying oils in transgenic plants. These findings also demonstrate a previously uncharacterized activity for Δ12-oleic acid desaturase-type enzymes that we have termed “conjugase.”
Resumo:
Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.
Resumo:
CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.
Resumo:
To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cell–cell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.