960 resultados para two-dimensional field theory
Resumo:
The hazards associated with major accident hazard (MAN) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion.
Resumo:
A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.
Resumo:
The prediction of the sound attenuation in lined ducts with sheared mean flow has been a topic of research for many years. This involves solving the sheared mean flow wave equation, satisfying the relevant boundary condition. As far as the authors' knowledge goes, this has always been done using numerical techniques. Here, an analytical solution is presented for the wave propagation in two-dimensional rectangular lined ducts with laminar mean flow. The effect of laminar mean flow is studied for both the downstream and the upstream wave propagation. The attenuation values predicted for the laminar mean flow case are compared with those for the case of uniform mean flow. Analytical expressions are derived for the transfer matrices.
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
Ground-state properties of the two-dimensional Hubbard model with point-defect disorder are investigated numerically in the Hartree-Fock approximation. The phase diagram in the p(point defect concentration)-delta(deviation from half filling) plane exhibits antiferromagnetic, spin-density-wave, paramagnetic, and spin-glass-like phases. The disorder stabilizes the antiferromagnetic phase relative to the spin-density-wave phase. The presence of U strongly enhances the localization in the antiferromagnetic phase. The spin-density-wave and spin-glass-like phases are weakly localized.
Resumo:
We report experimental observations of a new mechanism of charge transport in two-dimensional electron systems (2DESs) in the presence of strong Coulomb interaction and disorder. We show that at low enough temperature the conductivity tends to zero at a nonzero carrier density, which represents the point of essential singularity in a Berezinskii-Kosterlitz-Thouless-like transition. Our experiments with many 2DESs in GaAs/AlGaAs heterostructures suggest that the charge transport at low carrier densities is due to the melting of an underlying ordered ground state through proliferation of topological defects. Independent measurement of low-frequency conductivity noise supports this scenario.
Resumo:
We investigate the Nernst effect in a mesoscopic two-dimensional electron system (2DES) at low magnetic fields, before the onset of Landau level quantization. The overall magnitude of the Nernst signal agrees well with semiclassical predictions. We observe reproducible mesoscopic fluctuations in the signal that diminish significantly with an increase in temperature. We also show that the Nernst effect exhibits an anomalous component that is correlated with an oscillatory Hall effect. This behavior may be able to distinguish between different spin-correlated states in the 2DES.
Resumo:
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Lambda to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent theta = 2.9 +/- 0.2.
Resumo:
Multidimensional NMR studies of o-vanillin salicyloylhydrazone at various temperatures have been undertaken in deuterated dimethyl sulfoxide and its cryoprotective mixture in H2O and D2O, acetone and acetonitrile. The molecule is found to exist in two conformers in dimethyl sulfoxide and the cryoprotective mixture. The exchange between the two conformers has been detected from the two-dimensional experiments - information which is not easily obtainable from the normal one-dimensional spectra. Results in the different solvents are interpreted in terms of solvent-solute interactions.
Resumo:
The influence of temperature-dependent viscosity and Prandtl number on the unsteady laminar nonsimilar forced convection flow over two-dimensional and axisymmetric bodies has been examined where the unsteadiness and (or) nonsimilarity are (is) due to the free stream velocity, mass transfer, and transverse curvature. The partial differential equations governing the flow which involve three independent variables have been solved numerically using an implicit finite-difference scheme along with a quasilinearization technique. It is found that both the skin friction and heat transfer strongly respond to the unsteady free stream velocity distributions. The unsteadiness and injection cause the location of zero skin friction to move upstream. However, the effect of variable viscosity and Prandtl number is to move it downstream. The heat transfer is found to depend strongly on viscous dissipation, but the skin friction is little affected by it. In general, the results pertaining to variable fluid properties differ significantly, from those of constant fluid properties.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Transformation of a laterally diverging boundary layer flow to a two-dimensional boundary layer flow
Resumo:
Laterally diverging boundary layer flow over a plate is shown to be reducible to a two-dimensional flow by modelling the diverging streamlines by a source flow.