303 resultados para surround
Resumo:
Current space exploration has transpired through the use of chemical rockets, and they have served us well, but they have their limitations. Exploration of the outer solar system, Jupiter and beyond will most likely require a new generation of propulsion system. One potential technology class to provide spacecraft propulsion and power systems involve thermonuclear fusion plasma systems. In this class it is well accepted that d-He3 fusion is the most promising of the fuel candidates for spacecraft applications as the 14.7 MeV protons carry up to 80% of the total fusion power while ‘s have energies less than 4 MeV. The other minor fusion products from secondary d-d reactions consisting of 3He, n, p, and 3H also have energies less than 4 MeV. Furthermore there are two main fusion subsets namely, Magnetic Confinement Fusion devices and Inertial Electrostatic Confinement (or IEC) Fusion devices. Magnetic Confinement Fusion devices are characterized by complex geometries and prohibitive structural mass compromising spacecraft use at this stage of exploration. While generating energy from a lightweight and reliable fusion source is important, another critical issue is harnessing this energy into usable power and/or propulsion. IEC fusion is a method of fusion plasma confinement that uses a series of biased electrodes that accelerate a uniform spherical beam of ions into a hollow cathode typically comprised of a gridded structure with high transparency. The inertia of the imploding ion beam compresses the ions at the center of the cathode increasing the density to the point where fusion occurs. Since the velocity distributions of fusion particles in an IEC are essentially isotropic and carry no net momentum, a means of redirecting the velocity of the particles is necessary to efficiently extract energy and provide power or create thrust. There are classes of advanced fuel fusion reactions where direct-energy conversion based on electrostatically-biased collector plates is impossible due to potential limits, material structure limitations, and IEC geometry. Thermal conversion systems are also inefficient for this application. A method of converting the isotropic IEC into a collimated flow of fusion products solves these issues and allows direct energy conversion. An efficient traveling wave direct energy converter has been proposed and studied by Momota , Shu and further studied by evaluated with numerical simulations by Ishikawa and others. One of the conventional methods of collimating charged particles is to surround the particle source with an applied magnetic channel. Charged particles are trapped and move along the lines of flux. By introducing expanding lines of force gradually along the magnetic channel, the velocity component perpendicular to the lines of force is transferred to the parallel one. However, efficient operation of the IEC requires a null magnetic field at the core of the device. In order to achieve this, Momota and Miley have proposed a pair of magnetic coils anti-parallel to the magnetic channel creating a null hexapole magnetic field region necessary for the IEC fusion core. Numerically, collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 95% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A while collimation of electrons with stabilization coil present was demonstrated to reach 69% at a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A. Experimentally, collimation of electrons with stabilization coil present was demonstrated experimentally to be 35% at 100 eV and reach a peak of 39.6% at 50eV with a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A and collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 49% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A 6.4% of the 300eV electrons’ initial velocity is directed to the collector plates. The remaining electrons are trapped by the collimator’s magnetic field. These particles oscillate around the null field region several hundred times and eventually escape to the collector plates. At a solenoid voltage profile of 7 Volts, 100 eV electrons are collimated with wall and perpendicular component losses of 31%. Increasing the electron energy beyond 100 eV increases the wall losses by 25% at 300 eV. Ultimately it was determined that a field strength deriving from 9.5 MAT/m would be required to collimate 14.7 MeV fusion protons from d-3He fueled IEC fusion core. The concept of the proton collimator has been proven to be effective to transform an isotropic source into a collimated flow of particles ripe for direct energy conversion.
Resumo:
En este artículo, basado en el derecho a la libertad de iniciativa, se discute la constitucionalidad de la medida judicial que determina la intervención en sociedades comerciales en conflicto mediante administradores judiciales provisionales. Por lo tanto, se eligió el método hipotético-deductivo de enfoque, comenzando con laclasificación de la libre empresa como un derecho fundamental. Posteriormente, se presenta el panorama de las medidas judiciales dichas. Más que buscar y proporcionar una respuesta simple, se diseñan métricas de constitucionalidad basadas en argumentos que se encuentran en la teoría de los derechos fundamentales y en el derecho de sociedades. Como resultado principal, se vio que, incluso si toman la designación de terceros a la función de gestor comercial, la intervención judicial en conflictos societarios conserva el núcleo esencial de la libre empresa y los intereses corporativos y extra-sociales que rodea la organización empresarial, estableciendose de forma abstracta, como una medida legítima y constitucional.
Resumo:
Common computational principles underlie processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework, implemented in different visual areas, of circular feature coding and processing could explain these similarities in observations. Stimuli were created that allowed direct comparison of the contextual effects on orientation and motion direction with two different psychophysical probes: changes in weak and strong signal perception. One unique simplified theoretical model of circular feature coding including only inhibitory interactions, and decoding through standard vector average, successfully predicted the similarities in the two domains, while different feature population characteristics explained well the differences in modulation on both experimental probes. These results demonstrate how a single computational principle underlies processing of various features across the cortices.
Resumo:
Erratum to: A single theoretical framework for circular features processing in humans: orientation and direction of motion compared. In: Frontiers in computational neuroscience 6 (2012), 28
Resumo:
Among insects, which are the most diverse eukaryotic group on earth, Lepidoptera is one of four enormously diverse orders, with approximately 10,000 described species in North America. Within the order, Nearctic “microlepidoptera,” which represent an overwhelmingly large percentage of diversity within the order, remain poorly known despite their ecological importance in many plant communities. In this thesis, I undertook several studies of microlepidoptera diversity in a natural community type (hill prairie) and a managed community type (biofuel feedstock). In two Illinois hill prairies differing in size, latitude, and plant composition, alpha diversity of Pyraloidea and Tortricidae was similar, but the prairies were found to support different sets of species of these moth groups. It is concluded that the similarity in alpha diversity occurs because the larger prairie supports primarily a complement of moth species that feed as larvae on prairie plants (especially species of Asteraceae and Fabaceae), whereas the moths collected in the small prairie represent relatively few prairie-associated species, plus a large component of species that feed as larvae on deciduous trees that surround the prairie. This agrees with the finding of high beta diversity of moths between the sites, which reflects a high level of larval hostplant specificity in most species of Pyraloidea and Tortricidae. Based on published information plus observations made on microlepidoptera collected during the course of this study, 31 families of basal microlepidoptera were reviewed with an aim toward evaluating the likelihood of their including species that are dependent on tallgrass prairie. Of these families, 12 were evaluated as possible, and two as likely or certain, to include prairie-dependent species. In a comparison of moth diversity in light-trap samples from corn, miscanthus, switchgrass, and native prairie, alpha diversity was highest in prairie and was higher in switchgrass than in the other two biofuel crops. Moth species complements generally were similar among the biofuel crops, and prairie shared higher species complementarity with switchgrass than with corn or miscanthus. These findings suggest that large-scale conversion of land to biofuel crops may, to a substantial degree, detrimentally affect arthropod biodiversity, with a resulting loss of valuable arthropod-derived ecosystem services both within the cropping systems and in the surrounding landscape. During the course of this study, rearing efforts yielded two species of moths of the family Gelechiidae, both of which are monophagous leaf feeders on leadplant, Amorpha canescens (Fabaceae). Because these moths are restricted to tallgrass prairie, they are likely to be of interest to conservation biologists. In the interest of naming the moths to facilitate communication regarding them, and to augment our taxonomic knowledge of their respective genera, the moths are described, and diagnoses are provided to differentiate them from similar, related species.
Resumo:
Background: This article examines the concepts of low glycemic indices (GIs) and glycemic load (GL) foods as key drivers in the dietary management of type 2 diabetes as well as their shortcomings. The controversies arising from the analysis of glycemic index (GI) and GL of foods such as their reproducibility as well as their relevance to the dietary management of type 2 diabetes are also discussed. Methods: Search was conducted in relevant electronic databases such as: Pubmed, Google Scholar, HINARI, the Cochrane library, Popline, LILACS, CINAHL, EMBASE, etc to identify the current status of knowledge regarding the controversies surrounding management of diabetes with low GI and GL foods. Conclusion: This article suggests that in view of discrepancies that surround the results of GI versus GL of foods, any assay on the GI and GL of a food with the aim of recommending the food for the dietary management of type 2 diabetes, could be balanced with glycated hemoglobin assays before they are adopted as useful antidiabetic foods.
Resumo:
Bodies On the Line: Violence, Disposable Subjects, and the Border Industrial Complex explores the construction of identity and notions of belonging within an increasingly privatized and militarized Border Industrial Complex. Specifically, the project interrogates how discourses of Mexican migrants as racialized, gendered, and hypersexualized “deviants” normalize violence against border crossers. Starting at Juárez/El Paso border, I follow the expanding border, interrogating the ways that Mexican migrants, regardless of sexual orientation, have been constructed and disciplined according to racialized notions of “sexual deviance." I engage a queer of color critique to argue that sexual deviance becomes a justification for targeting and containing migrant subjects. By focusing on the economic and racially motivated violence that the Border Industrial Complex does to Mexican migrant communities, I expand the critiques that feminists of color have long leveraged against systemic violence done to communities of color through the prison industrial system. Importantly, this project contributes to transnational feminist scholarship by contextualizing border violence within the global circuits of labor, capital, and ideology that shape perceptions of border insecurity. The project contributes an interdisciplinary perspective that uses a multi-method approach to understand how border violence is exercised against Mexicans at the Mexico-US border. I use archival methods to ask how historical records housed at the National Border Patrol Museum and Memorial Library serve as political instruments that reinforce the contemporary use of violence against Mexican migrants. I also use semi-structured interviews with nine frequent border crossers to consider the various ways crossers defined and aligned themselves at the border. Finally, I analyze the master narratives that come to surround specific cases of border violence. To that end, I consider the mainstream media’s coverage, legal proceedings, and policy to better understand the racialized, gendered, and sexualized logics of the violence.
Resumo:
Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine.
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura com especialização em Urbanismo, apresentada na Universidade de Lisboa - Faculdade de Arquitetura.
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura com especialização em Arquitectura de Interiores, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell
Resumo:
Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System.
Resumo:
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^
Resumo:
The reality of children living in foster homes is clearly linked to the professionals that surround them both in the educational and residentialsphere. These are children who in all aspects of their livesat all hours, are exposed to the professionalism of those who work with them and not the affection of a family; their development is fully mediated by institutions. It is therefore a priority that teachers have specific training on children living infoster care, that general government (Education and Social Services) provide guidelines for action agreed to allow the coordination between the different professionals involved with children in foster care, considering the complexity of this coordination, as there are many institutions involved with these children: Social Services, schools, foster residences foster ... among others. Educational professionals have an important role in this intervention process, being their good professional work the one that favors a tight development of children in the educational field, but this intervention takes place generally from the ignorance of the specific situation faced by children living inresidential care and from the failure of the educational administration into sharing protocols, time and space, necessary for a proper coordination. In the event children incustody, and because of the uniqueness of their situation and the importance of a good intervention, there should be no space for improvisation.In addition intervention with children in residential care has to be based on a training and intervention from the complementary roles that is to be structured, systematic and evaluated in a continuously way by the professionals involved.We understand that the principle of equality in education requires to offer these minors an opportunity based on an appropriate intervention with formed professionals, knowledgeable and with the time and the necessary conditions...
Resumo:
Thesis (Master, Biology) -- Queen's University, 2016-09-28 15:06:46.124