860 resultados para serine lipidic metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, the catabolite repression control (Crc) protein repressed the formation of the blue pigment pyocyanin in response to a preferred carbon source (succinate) by interacting with phzM mRNA, which encodes a key enzyme in pyocyanin biosynthesis. Crc bound to an extended imperfect recognition sequence that was interrupted by the AUG translation initiation codon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review on intra-individual factors affecting drug metabolism completes our series on the biochemistry of drug metabolism. The article presents the molecular mechanisms causing intra-individual differences in enzyme expression and activity. They include enzyme induction by transcriptional activation and enzyme inhibition on the protein level. The influencing factors are of physiological, pathological, or external origin. Tissue characteristics and developmental age strongly influence enzyme-expression patterns. Further influencing factors are pregnancy, disease, or biological rhythms. Xenobiotics, drugs, constituents of herbal remedies, food constituents, ethanol, and tobacco can all influence enzyme expression or activity and, hence, affect drug metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposomes are vesicular lipidic systems allowing encapsulation of drugs. This article reviews the relevant issues in liposome structure (composition and size), and their influence on intravitreal pharmacokinetics. Liposome-mediated drug delivery to the posterior segment of the eye via intravitreal administration has been addressed by several authors and remains experimental. Liposomes have been used for intravitreal delivery of antibiotics, antivirals, antifungal drugs, antimetabolites, and cyclosporin. Encapsulation of these drugs within liposomes markedly increased their intravitreal half-life, and reduced their retinal toxicity. Liposomes have also shown an attractive potential for retinal gene transfer by intravitreal delivery of plasmids or oligonucleotides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HtrA surface protease is involved in the virulence of many pathogens, mainly by its role in stress resistance and bacterial survival. Staphylococcus aureus encodes two putative HtrA-like proteases, referred to as HtrA(1) and HtrA(2). To investigate the roles of HtrA proteins in S. aureus, we constructed htrA(1), htrA(2), and htrA(1) htrA(2) insertion mutants in two genetically different virulent strains, RN6390 and COL. In the RN6390 context, htrA(1) inactivation resulted in sensitivity to puromycin-induced stress. The RN6390 htrA(1) htrA(2) mutant was affected in the expression of several secreted virulence factors comprising the agr regulon. This observation was correlated with the disappearance of the agr RNA III transcript in the RN6390 htrA(1) htrA(2) mutant. The virulence of this mutant was diminished in a rat model of endocarditis. In the COL context, both HtrA(1) and HtrA(2) were essential for thermal stress survival. However, only HtrA(1) had a slight effect on exoprotein expression. The htrA mutations did not diminish the virulence of the COL strain in the rat model of endocarditis. Our results indicate that HtrA proteins have different roles in S. aureus according to the strain, probably depending on specific differences in the regulation of virulence factor and stress protein expression. We propose that HtrA(1) and HtrA(2) contribute to pathogenicity by controlling the production of certain extracellular factors that are crucial for bacterial dissemination, as revealed in the RN6390 background. We speculate that HtrA proteins act in the agr-dependent regulation pathway by assuring folding and/or maturation of some surface components of the agr system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe head injury induces major hormonal, humoral and metabolic changes, characterized by increases in stress hormone secretion, lymphokines production, associated with high lipid and protein catabolism as well as changes in energy expenditure (EE). Numerous factors influence EE in head-injured patients, particularly anthropometric data, body temperature, nutritional support, level of consciousness, muscular tone and activity. Resting EE is usually increased following brain trauma; however, normal or decreased metabolic rates can be observed in curarized patients on mechanical ventilation or in patients receiving high doses of barbiturates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review continues a general presentation of the metabolism of drugs and other xenobiotics begun in five recent issues of Chemistry & Biodiversity. The present Part is dedicated to the pharmacological and toxicological consequences of drug and xenobiotic metabolism. In other words, the key concepts here are activation vs. deactivation, toxification vs. detoxification, and their interplay. These concepts are illustrated with a number of medicinally, toxicologically, and environmentally relevant examples. But, far from being concerned only with individual cases, the review is based on broad classifications, global rationalizations, and synthetic hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of endocrine disruption emerged over a decade ago with the observation that several natural or industrial compounds can interfere with estrogen and androgen signaling, and thereby affect both male and female reproductive functions. Since then, many endocrine-disrupting chemicals (EDCs) have been identified and the concept has been broadened to receptors regulating other aspects of endocrine pathways. In that context, interference of EDCs with receptors regulating metabolism has been proposed as a factor that could contribute to metabolic diseases such as obesity and diabetes. We review recent studies showing that several pollutants, including phthalates and organotins, interfere with PPAR (peroxisome proliferator-activated receptors) nuclear receptors and may thereby affect metabolic homeostasis. Particular emphasis is given on the mechanisms of action of these compounds. However, unlike what has been suspected, we provide evidence from mouse models suggesting that in utero exposure to the phthalate ester di-ethyl-hexyl-phthalate most likely does not predispose to obesity. Collectively, these studies define a subclass of EDCs that perturb metabolic signaling and that we propose to define as metabolic disruptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity results from the organism's inability to maintain energy balance over a long term. Childhood obesity and its related factors and pathological consequences tend to persist into adulthood. A cluster of factors, including high energy density in the diet (high fat intake), low energy expenditure, and disturbed substrate oxidation, favour the increase in fat mass. Oxidation of three major macronutrients and their roles in the regulation of energy balance, particularly in children and adolescents, are discussed. Total glucose oxidation is not different between obese and lean children; exogenous glucose utilization is higher whereas endogenous glucose utilization is lower in obese compared with lean children. Carbohydrate composition of the diet determines carbohydrate oxidation regardless of fat content of the diet. Both exogenous and endogenous fat oxidation are higher in obese than in lean subjects. The influence of high fat intake on accumulation of fat mass is operative rather over a long term. Several future directions are addressed, such that a combination of increased physical activity and modification in diet composition, in terms of energy density and glycemic index, is recommended for children and adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most aggressive brain tumor that, by virtue of its resistance to chemotherapy and radiotherapy, is currently incurable. Identification of molecules whose targeting may eliminate GBM cells and/or sensitize glioblastoma cells to cytotoxic drugs is therefore urgently needed. CD44 is a major cell surface hyaluronan receptor and cancer stem cell marker that has been implicated in the progression of a variety of cancer types. However, the major downstream signaling pathways that mediate its protumor effects and the role of CD44 in the progression and chemoresponse of GBM have not been established. Here we show that CD44 is upregulated in GBM and that its depletion blocks GBM growth and sensitizes GBM cells to cytotoxic drugs in vivo. Consistent with this observation, CD44 antagonists potently inhibit glioma growth in preclinical mouse models. We provide the first evidence that CD44 functions upstream of the mammalian Hippo signaling pathway and that CD44 promotes tumor cell resistance to reactive oxygen species-induced and cytotoxic agent-induced stress by attenuating activation of the Hippo signaling pathway. Together, our results identify CD44 as a prime therapeutic target for GBM, establish potent antiglioma efficacy of CD44 antagonists, uncover a novel CD44 signaling pathway, and provide a first mechanistic explanation as to how upregulation of CD44 may constitute a key event in leading to cancer cell resistance to stresses of different origins. Finally, our results provide a rational explanation for the observation that functional inhibition of CD44 augments the efficacy of chemotherapy and radiation therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages, which belong to the immune system, are increasingly being recognized for their contribution to metabolic regulation. In two studies by Kang et al. (2008) and Odegaard et al. (2008) in this issue of Cell Metabolism, we learn that alternative activation (M2a) of resident macrophages in liver and adipose tissue depends highly on PPARdelta/beta activity, leading to improved fatty acid metabolism and insulin sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous respiratory-exchange measurements were performed on ten moderately obese and ten lean young women for 1 h before, 3 h during, and 3 h after either parenteral (IV) or intragastric (IG) administration of a nutrient mixture infused at twice the postabsorptive, resting energy expenditure (REE). REE rose significantly from 0.98 +/- 0.02 to 1.13 +/- 0.03 kcal/min (IV) and from 0.99 +/- 0.02 to 1.13 +/- 0.02 kcal/min (IG) in the lean group; from 1.10 +/- 0.02 to 1.27 +/- 0.03 kcal/min (IV) and from 1.11 +/- 0.02 to 1.29 +/- 0.03 (IG) in the obese group. These increases resulted in similar nutrient-induced thermogenesis of 10.0 +/- 0.7% (IV) and 9.3 +/- 0.9% (IG) in the lean group; of 9.2 +/- 0.7% (IV) and 10.1 +/- 0.8% (IG) in the obese. Nutrient utilization was comparable in both groups and in both routes of administration, although the response time to IG feeding was delayed. These results showed no significant difference in both the thermogenic response and nutrient utilization between moderately obese and control groups using acute IV or IG feeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists used to treat type 2 diabetes. TZD treatment induces side effects such as peripheral fluid retention, often leading to discontinuation of therapy. Previous studies have shown that PPARγ activation by TZD enhances the expression or function of the epithelial sodium channel (ENaC) through different mechanisms. However, the effect of TZDs on ENaC activity is not clearly understood. Here, we show that treating Xenopus laevis oocytes expressing ENaC and PPARγ with the TZD rosiglitazone (RGZ) produced a twofold increase of amiloride-sensitive sodium current (Iam), as measured by two-electrode voltage clamp. RGZ-induced ENaC activation was PPARγ-dependent since the PPARγ antagonist GW9662 blocked the activation. The RGZ-induced Iam increase was not mediated through direct serum- and glucocorticoid-regulated kinase (SGK1)-dependent phosphorylation of serine residue 594 on the human ENaC α-subunit but by the diminution of ENaC ubiquitination through the SGK1/Nedd4-2 pathway. In accordance, RGZ increased the activity of ENaC by enhancing its cell surface expression, most probably indirectly mediated through the increase of SGK1 expression.