843 resultados para nano-bainite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of Au nanoparticles deposited on thermochromic thin films of VO2 are investigated using spectroscopy. A localized modification on the transmittance spectrum of VO2 film is formed due to the presence of Au nanoparticles which exhibit localized surface plasmon resonance (LSPR) in the visible-near IR region. The position of the modification wavelength region shows a strong dependence on the Au mass thickness and shifts toward the red as it increases. On the other hand, it was found that the LSPR of Au nanoparticles can be thermally tunable because of the thermochromism of the supporting material of VO2. The LSPR wavelength, lambda(SPR), shifts to the blue with increasing temperature, and shifts back to the red as temperature decreases. A fine tuning is achieved when the temperature is increased in a stepwise manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase effective load, light-weight micro-propulsion system is necessary for micro-satellites. Traditional propulsion systems including large and heavy high-pressure vessels are difficult to be scaled down to fulfill the demand of micro-satellites. In this article, a novel self-pressurizing fuel tank without high-pressure gas vessel is proposed. When some liquid propellant is consumed, pressure is compensated with CO2 released by heating NH4HCO3 powder in the fuel tank. Comparing with other types of self-pressurizing liquid fuel tank, a gas generator with special and simple structure was designed to stop or continue the NH4HCO3 decomposition reaction easily, and consumed a small amount of energy to heat the powder effectively. Performance tests showed that this new prototype is very suitable for micro-thrusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the utilization of localized surface plasmon resonance (LSPR) of Ag nanoparticles to tailor the optical properties Of VO2 thin film. Interaction of nano-Ag with incident light yields a salient absorption band in the visible-near IR region and modifies the spectrum Of VO2 locally. The wavelength of modification occurs in a limited spectral region rather than affects the full spectrum. The wavelength of modification shows a strong dependence on the metal nanoparticle size and shifts toward the red as the particle size or the mass thickness of nano-Ag increases. Also, we found that the wavelength can be shifted into the IR further by introducing a thin layer of TiO2 onto the nano-Ag. Interestingly, with the help of LSPR effects the VO2 film exhibits an anomalous thermochromic behavior in the modification wavelength region, which may be useful in optical switching applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor-metal transition of vanadium dioxide (VO2) thin films epitaxially grown on C-plane sapphire is studied by depositing Au nanoparticles onto the thermochromic films forming a metal-semiconductor contact, namely, a nano-Au-VO2 junction. It reveals that Au nanoparticles have a marked effect on the reduction in the phase transition temperature of VO2. A process of electron injection in which electrons flow from Au to VO2 due to the lower work function of the metal is believed to be the mechanism. The result may support the Mott-Hubbard phase transition model for VO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review paper summarises briefly some important achievements of our recent research on the synthesis and novel applications of nanostructure ZnO such as honeycomb shaped 3-D (dimension) nano random-walls. A chemical reaction/vapour transportation deposition technique was employed to fabricate this structure on ZnO/SiO2/Si substrate without any catalyst and additive in a simple tube furnace to aim the low-cost and high qualified samples. Random laser action with strong coherent feedback at the wavelength between 375 nm and 395 nm has been firstly observed under 355 nm optical excitation with threshold pumping intensity of 0.38 MW/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.