888 resultados para likelihood-based inference


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system of computer assisted grammar construction (CAGC) is presented in this paper. The CAGC system is designed to generate broad-coverage grammars for large natural language corpora by utilizing both an extended inside-outside algorithm and an automatic phrase bracketing (AUTO) system which is designed to provide the extended algorithm with constituent information during learning. This paper demonstrates the capability of the CAGC system to deal with realistic natural language problems and the usefulness of the AUTO system for constraining the inside-outside based grammar re-estimation. Performance results, including coverage, recall and precision, are presented for a grammar constructed for the Wall Street Journal (WSJ) corpus using the Penn Treebank.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of several classification attempts among taxa of the genus Lepus, phylogenetic relationships still remain poorly understood. Here, we present molecular genetic evidence that may resolve some of the current incongruities in the phylogeny of the leporids. The complete mitochondrial cytb, 12S genes, and parts of ND4 and control region fragments were sequenced to examine phylogenetic relationships among Chinese hare taxa and other leporids throughout the World using maximum parsimony, maximum likelihood, and Bayesian phylogenetic reconstruction approaches. Using reconstructed phylogenies, we observed that the Chinese hare is not a single monophyletic group as originally thought. Instead, the data infers that the genus Lepus is monophyletic with three unique species groups: North American, Eurasian, and African. Ancestral area analysis indicated that ancestral Lepus arose in North America and then dispersed into Eurasia via the Bering Land Bridge eventually extending to Africa. Brooks Parsimony analysis showed that dispersal events followed by subsequent speciation have occurred in other geographic areas as well and resulted in the rapid radiation and speciation of Lepus. A Bayesian relaxed molecular clock approach based on the continuous autocorrelation of evolutionary rates along branches estimated the divergence time between the three major groups within Lepus. The genus appears to have arisen approximately 10.76 MYA (+/- 0.86 MYA), with most speciation events occurring during the Pliocene epoch (5.65 +/- 1.15 MYA similar to 1.12 +/- 10.47 MYA). (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasingly common scenario in building speech synthesis and recognition systems is training on inhomogeneous data. This paper proposes a new framework for estimating hidden Markov models on data containing both multiple speakers and multiple languages. The proposed framework, speaker and language factorization, attempts to factorize speaker-/language-specific characteristics in the data and then model them using separate transforms. Language-specific factors in the data are represented by transforms based on cluster mean interpolation with cluster-dependent decision trees. Acoustic variations caused by speaker characteristics are handled by transforms based on constrained maximum-likelihood linear regression. Experimental results on statistical parametric speech synthesis show that the proposed framework enables data from multiple speakers in different languages to be used to: train a synthesis system; synthesize speech in a language using speaker characteristics estimated in a different language; and adapt to a new language. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present algorithms for tracking and reasoning of local traits in the subsystem level based on the observed emergent behavior of multiple coordinated groups in potentially cluttered environments. Our proposed Bayesian inference schemes, which are primarily based on (Markov chain) Monte Carlo sequential methods, include: 1) an evolving network-based multiple object tracking algorithm that is capable of categorizing objects into groups, 2) a multiple cluster tracking algorithm for dealing with prohibitively large number of objects, and 3) a causality inference framework for identifying dominant agents based exclusively on their observed trajectories.We use these as building blocks for developing a unified tracking and behavioral reasoning paradigm. Both synthetic and realistic examples are provided for demonstrating the derived concepts. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many methods for decomposing signals into a sum of amplitude and frequency modulated sinusoids. In this paper we take a new estimation based approach. Identifying the problem as ill-posed, we show how to regularize the solution by imposing soft constraints on the amplitude and phase variables of the sinusoids. Estimation proceeds using a version of Kalman smoothing. We evaluate the method on synthetic and natural, clean and noisy signals, showing that it outperforms previous decompositions, but at a higher computational cost. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as an heuristic by which to extract semantic information from multi-dimensional time-series. Here, we develop a probabilistic interpretation of this algorithm showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual spring-board, with which to motivate several novel extensions to the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of "simple reduction" for the problem of inferring marginal probabilities and consider whether it is possible to "simply reduce" marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous "spectral reduction" based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Bayesian probabilistic framework to assess soil properties and model uncertainty to better predict excavation-induced deformations using field deformation data. The potential correlations between deformations at different depths are accounted for in the likelihood function needed in the Bayesian approach. The proposed approach also accounts for inclinometer measurement errors. The posterior statistics of the unknown soil properties and the model parameters are computed using the Delayed Rejection (DR) method and the Adaptive Metropolis (AM) method. As an application, the proposed framework is used to assess the unknown soil properties of multiple soil layers using deformation data at different locations and for incremental excavation stages. The developed approach can be used for the design of optimal revisions for supported excavation systems. © 2010 ASCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet process mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prediction of time-changing variances is an important task in the modeling of financial data. Standard econometric models are often limited as they assume rigid functional relationships for the evolution of the variance. Moreover, functional parameters are usually learned by maximum likelihood, which can lead to over-fitting. To address these problems we introduce GP-Vol, a novel non-parametric model for time-changing variances based on Gaussian Processes. This new model can capture highly flexible functional relationships for the variances. Furthermore, we introduce a new online algorithm for fast inference in GP-Vol. This method is much faster than current offline inference procedures and it avoids overfitting problems by following a fully Bayesian approach. Experiments with financial data show that GP-Vol performs significantly better than current standard alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitochondrial 16S ribosomal RNA gene is sequenced from 24 ingroups taxa, including 18 species from Labeoninae grouped in 13 genera. Phylogenetic analyses are subjected to neighbor joining, maximum parsimony, maximum likelihood and Bayesian analyses. Phylogenetic analysis indicates that Labeoninae is basically a monophyletic assemblage and can be divided into 2 major clades: one comprising the genera Cirrhinus, Crossocheilus and Garra; and the other consisting of the genera Labeo, Sinilabeo, Osteochilus, Pseudoorossocheilus, Parasinilabeo. Ptychidio, Semilabeo, Pseudogyricheilus, Rectori and Discogobio. According to our present analysis, the features such as the presence of the adhesive disc on the chin and the pharyngeal teeth in 2 rows used in the traditional taxonomy of Labeoninae provide scarce information for phylogeny of labeonine fishes.