930 resultados para kernel estimates
Resumo:
In this paper we test for the hysteresis versus the natural rate hypothesis on the unemployment rates of the EU new members using unit root tests that account for the presence of level shifts. As a by product, the analysis proceeds to the estimation of a NAIRU measure from a univariate point of view. The paper also focuses on the precision of these NAIRU estimates studying the two sources of inaccuracy that derive from the break points estimation and the autoregressive parameters estimation. The results point to the existence of up to four structural breaks in the transition countries NAIRU that can be associated with institutional changes implementing market-oriented reforms. Moreover, the degree of persistence in unemployment varies dramatically among the individual countries depending on the stage reached in the transition process
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
This paper presents a new regional database on GDP in Spain for the years 1860, 1900, 1914 and 1930. Following Geary and Stark (2002), country level GDP estimates are allocated across Spanish provinces. The results are then compared with previous estimates. Further, this new evidence is used to analyze the evolution of regional inequality and convergence in the long run. According to the distribution dynamics approach suggested by Quah (1993, 1996) persistence appears as a main feature in the regional distribution of output. Therefore, in the long run no evidence of regional convergence in the Spanish economy is found.
Resumo:
En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
In this paper we test for the hysteresis versus the natural rate hypothesis on the unemployment rates of the EU new members using unit root tests that account for the presence of level shifts. As a by product, the analysis proceeds to the estimation of a NAIRU measure from a univariate point of view. The paper also focuses on the precision of these NAIRU estimates studying the two sources of inaccuracy that derive from the break points estimation and the autoregressive parameters estimation. The results point to the existence of up to four structural breaks in the transition countries NAIRU that can be associated with institutional changes implementing market-oriented reforms. Moreover, the degree of persistence in unemployment varies dramatically among the individual countries depending on the stage reached in the transition process
Resumo:
Chlorophyll determination with a portable chlorophyll meter can indicate the period of highest N demand of plants and whether sidedressing is required or not. In this sense, defining the optimal timing of N application to common bean is fundamental to increase N use efficiency, increase yields and reduce the cost of fertilization. The objectives of this study were to evaluate the efficiency of N sufficiency index (NSI) calculated based on the relative chlorophyll index (RCI) in leaves, measured with a portable chlorophyll meter, as an indicator of time of N sidedressing fertilization and to verify which NSI (90 and 95 %) value is the most appropriate to indicate the moment of N fertilization of common bean cultivar Perola. The experiment was carried out in the rainy and dry growing seasons of the agricultural year 2009/10 on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block design with five treatments, consisting of N managements (M1: 200 kg ha-1 N (40 kg at sowing + 80 kg 15 days after emergence (DAE) + 80 kg 30 DAE); M2: 100 kg ha-1 N (20 kg at sowing + 40 kg 15 DAE + 40 kg 30 DAE); M3: 20 kg ha-1 N at sowing + 30 kg ha-1 when chlorophyll meter readings indicated NSI < 95 %; M4: 20 kg ha-1 N at sowing + 30 kg ha-1 N when chlorophyll meter readings indicated NSI < 90 % and, M5: control (without N application)) and four replications. The variables RCI, aboveground dry matter, total leaf N concentration, production components, grain yield, relative yield, and N use efficiency were evaluated. The RCI correlated with leaf N concentrations. By monitoring the RCI with the chlorophyll meter, the period of N sidedressing of common bean could be defined, improving N use efficiency and avoiding unnecessary N supply to common bean. The NSI 90 % of the reference area was more efficient to define the moment of N sidedressing of common bean, to increase N use efficiency.
Resumo:
Summary
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
This paper presents a new regional database on GDP in Spain for the years 1860, 1900, 1914 and 1930. Following Geary and Stark (2002), country level GDP estimates are allocated across Spanish provinces. The results are then compared with previous estimates. Further, this new evidence is used to analyze the evolution of regional inequality and convergence in the long run. According to the distribution dynamics approach suggested by Quah (1993, 1996) persistence appears as a main feature in the regional distribution of output. Therefore, in the long run no evidence of regional convergence in the Spanish economy is found.
Resumo:
En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.