920 resultados para cell level
Resumo:
BACKGROUND: The term endothelial progenitor cells (EPCs) is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs) and outgrowth endothelial cells (OECs). METHODS: Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. RESULTS: Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN) with links to immunity and inflammation (TLRs, CD14, HLAs), whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins) are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. CONCLUSIONS: This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature.
Resumo:
AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.
METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.
RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.
CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.
Resumo:
The transcription factors Pea3, Erm, and Er81 can promote cancer initiation and progression in various types of solid tumors. However, their role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. In this study, we found that the expression levels of Pea3 and Erm, but not that of Er81, were significantly higher in ESCC compared with nontumor esophageal epithelium. A high level of Pea3 expression was significantly correlated with a shorter overall survival in a cohort of 81 patients with ESCC and the subgroup with N1 stage tumor (Wilcoxon-Gehan test, P = 0.016 and P = 0.001, respectively). Pea3 was overexpressed in seven ESCC cell lines compared with two immortalized esophageal cell lines. Pea3 knockdown reduced cell proliferation and suppressed nonadherent growth, migration, and invasion in ESCC cells in vitro. In addition, Pea3 knockdown in ESCC cells resulted in a down-regulation of phospho-Akt and matrix metalloproteinase 13, whereas a significant positive correlation in the expression levels was observed between Pea3 and phospho-Akt (r = 0.281, P
Resumo:
The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites -zearalenol (-ZOL) and -zearalenol (-ZOL). -ZOL exhibited the strongest estrogenic potency (EC50 0.022 ± 0.001 nM), slightly less potent than 17- estradiol (EC50 0.015 ± 0.002 nM). ZEN was ~70 times less potent than -ZOL and twice as potent as -ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, -ZOL or -ZOL. ZEN, -ZOL or -ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 M. At 100 M, cell viability decreased and levels of hormones were significantly reduced except for progesterone. -ZOL increased estradiol concentrations more than -ZOL or ZEN, with a maximum effect at 10 M, with -ZOL (562 ± 59 pg/ml) > -ZOL (494 ± 60 pg/ml) > ZEN (375 ± 43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production.
Resumo:
In the present study survival responses were determined in cells with differing radiosensitivity, specifically primary fibroblast (AG0-1522B), human breast cancer (MDA-MB-231), human prostate cancer (DU-145) and human glioma (T98G) cells, after exposure to modulated radiation fields delivered by shielding 50% of the tissue culture flask. A significant decrease (P < 0.05) in cell survival was observed in the shielded area, outside the primary treatment field (out-of-field), that was lower than predicted when compared to uniform exposures fitted to the linear-quadratic model. Cellular radiosensitivity was demonstrated to be an important factor in the level of response for both the in- and out-of-field regions. These responses were shown to be dependent on secretion-mediated intercellular communication, because inhibition of cellular secreted factors between the in- and out-of-field regions abrogated the response. Out-of-field cell survival was shown to increase after pretreatment of cells with agents known to inhibit factors involved in mediating radiation-induced bystander signaling (aminoguanidine, DMSO or cPTIO). These data illustrate a significant decrease in survival out-of-field, dependent upon intercellular communication, in several cell lines with varying radiosensitivity after exposure to a modulated radiation field. This study provides further evidence for the importance of intercellular signaling in modulated exposures, where dose gradients are present, and may inform the refinement of established radiobiological models to facilitate the optimization of advanced radiotherapy treatment plans.
Resumo:
The aim of the present study was to compare the effect of lutein- and zeaxanthin-rich foods and supplements on macular pigment level (MPL) and serological markers of endothelial activation, inflammation and oxidation in healthy volunteers. We conducted two 8-week intervention studies. Study 1 (n 52) subjects were randomised to receive either carrot juice (a carotene-rich food) or spinach powder (a lutein- and zeaxanthin-rich food) for 8 weeks. Study 2 subjects (n 75) received supplements containing lutein and zeaxanthin, ß-carotene, or placebo for 8 weeks in a randomised, double-blind, placebo-controlled trial. MPL, serum concentrations of lipid-soluble antioxidants, inter-cellular adhesion molecule 1, vascular cell adhesion molecule 1, C-reactive protein and F2-isoprostane levels were assessed at baseline and post-intervention in both studies. In these intervention studies, no effects on MPL or markers of endothelial activation, inflammation or oxidation were observed. However, the change in serum lutein and zeaxanthin was associated or tended to be associated with the change in MPL in those receiving lutein- and zeaxanthin-rich foods (lutein r 0.40, P = 0.05; zeaxanthin r 0.30, P = 0.14) or the lutein and zeaxanthin supplement (lutein r 0.43, P = 0.03; zeaxanthin r 0.22, P = 0.28). In both studies, the change in MPL was associated with baseline MPL (food study r - 0.54, P <0.001; supplement study r - 0.40, P <0.001). We conclude that this 8-week supplementation with lutein and zeaxanthin, whether as foods or as supplements, had no significant effect on MPL or serological markers of endothelial activation, inflammation and oxidation in healthy volunteers, but may improve MPL in the highest serum responders and in those with initially low MPL.
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.
Resumo:
Porcine circovirus type 2 (PCV2) is the essential infectious agent of post-weaning multisystemic wasting syndrome (PMWS), one of the most important diseases of swine. Although several studies have described different biological properties of the virus, some aspects of its replication cycle, including ultrastructural alterations, remain unknown. The aim of the present study was to describe for the first time a complete morphogenesis study of PCV2 in a clone of the lymphoblastoid L35 cell line at the ultrastructural level using electron microscopy techniques. Cells were infected with PCV2 at a multiplicity of infection of 10 and examined at 0, 6, 12, 24, 48, 60 and 72 h post-infection. PCV2 was internalized by endocytosis, after which the virus aggregated in intracytoplasmic inclusion bodies (ICIs). Subsequently, PCV2 was closely associated with mitochondria, completing a first cytoplasmic phase. The virus entered the nucleus for replication and virus assembly and encapsidation occurred with the participation of the nuclear membrane. Immature virions left the nucleus and formed ICIs in a second cytoplasmic phase. The results suggest that at the end of the replication cycle (between 24 and 48 h), PCV2 was released either by budding of mature virion clusters or by lysis of apoptotic or dead cells. In conclusion, the L35-derived clone represents a suitable in-vitro model for PCV2 morphogenesis studies and characterization of the PCV2 replication cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.
Resumo:
Committees worldwide have set almost identical folate recommendations for the prevention of the first occurrence of neural tube defects (NTDs). We evaluate these recommendations by reviewing the results of intervention studies that examined the response of red blood cell folate to altered folate intake. Three options are suggested to achieve the extra 400 mu g folic acid/d being recommended by the official committees: increased intake of folate-rich foods, dietary folic acid supplementation, and folic acid fortification of food. A significant increase in foods naturally rich in folates was shown to be a relatively ineffective means of increasing red blood cell folate status in women compared with equivalent intakes of folic acid-fortified food, presumably because the synthetic form of the vitamin is more stable and more bioavailable. Although folic acid supplements are highly effective in optimizing folate status, supplementation is not an effective strategy for the primary prevention of NTDs because of poor compliance. Thus, food fortification is seen by many as the only option likely to succeed. Mandatory folic acid fortification of grain products was introduced recently in the United States at a level projected to provide an additional mean intake of 100 mu g folic acid/d, but some feel that this policy does not go far enough. A recent clinical trial predicted that the additional intake of folic acid in the United States will reduce NTDs by >20%, whereas 200 mu g/d would be highly protective and is the dose also shown to be optimal in lowering plasma homocysteine, with possible benefits in preventing cardiovascular disease. Thus, an amount lower than the current target of an extra 400 mu g/d may be sufficient to increase red blood cell folate to concentrations associated with the lowest risk of NTDs, but further investigation is warranted to establish the optimal amount.
Resumo:
The initial part of this paper reviews the early challenges (c 1980) in achieving real-time silicon implementations of DSP computations. In particular, it discusses research on application specific architectures, including bit level systolic circuits that led to important advances in achieving the DSP performance levels then required. These were many orders of magnitude greater than those achievable using programmable (including early DSP) processors, and were demonstrated through the design of commercial digital correlator and digital filter chips. As is discussed, an important challenge was the application of these concepts to recursive computations as occur, for example, in Infinite Impulse Response (IIR) filters. An important breakthrough was to show how fine grained pipelining can be used if arithmetic is performed most significant bit (msb) first. This can be achieved using redundant number systems, including carry-save arithmetic. This research and its practical benefits were again demonstrated through a number of novel IIR filter chip designs which at the time, exhibited performance much greater than previous solutions. The architectural insights gained coupled with the regular nature of many DSP and video processing computations also provided the foundation for new methods for the rapid design and synthesis of complex DSP System-on-Chip (SoC), Intellectual Property (IP) cores. This included the creation of a wide portfolio of commercial SoC video compression cores (MPEG2, MPEG4, H.264) for very high performance applications ranging from cell phones to High Definition TV (HDTV). The work provided the foundation for systematic methodologies, tools and design flows including high-level design optimizations based on "algorithmic engineering" and also led to the creation of the Abhainn tool environment for the design of complex heterogeneous DSP platforms comprising processors and multiple FPGAs. The paper concludes with a discussion of the problems faced by designers in developing complex DSP systems using current SoC technology. © 2007 Springer Science+Business Media, LLC.
Resumo:
A systolic array is an array of individual processing cells each of which has some local memory and is connected only to its nearest neighbours in the form of a regular lattice. On each cycle of a simple clock every cell receives data from its neighbouring cells and performs a specific processing operation on it. The resulting data is stored within the cell and passed on to neighbouring cells on the next clock cycle. This paper gives an overview of work to date and illustrates the application of bit-level systolic arrays by means of two examples: (1) a pipelined bit-slice circuit for computing matrix x vector transforms; and (2) a bit serial structure for multi-bit convolution.
Resumo:
Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 mu g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-alpha, IL-1 beta, IL-6, IFN-gamma) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-gamma and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Lipopolysaccharide (LPS) is a glycolipid present in the outer membrane of all Gram-negative bacteria, and it is one of the signature molecules recognized by the receptors of the innate immune system. In addition to its lipid A portion (the endotoxin), its O-chain polysaccharide (the O-antigen) plays a critical role in the bacterium-host interplay and, in a number of bacterial pathogens, it is a virulence factor. We present evidence that, in Yersinia enterocolitica serotype O:8, a complex signalling network regulates O-antigen expression in response to temperature. Northern blotting and reporter fusion analyses indicated that temperature regulates the O-antigen expression at the transcriptional level. Promoter cloning showed that the O-antigen gene cluster contains two transcriptional units under the control of promoters P(wb1) and P(wb2). The activity of both promoters is under temperature regulation and is repressed in bacteria grown at 37 degrees C. We demonstrate that the RosA/RosB efflux pump/potassium antiporter system and Wzz, the O-antigen chain length determinant, are indirectly involved in the regulation mainly affecting the activity of promoter P(wb2). The rosAB transcription, under the control of P(ros), is activated at 37 degrees C, and P(wb2) is repressed through the signals generated by the RosAB system activation, i.e. decreased [K+] and increased [H+]. The wzz transcription is under the control of P(wb2), and we show that, at 37 degrees C, overexpression of Wzz downregulates slightly the P(wb1) and P(wb2) activities and more strongly the P(ros) activity, with the net result that more O-antigen is produced. Finally, we demonstrate that overexpression of Wzz causes membrane stress that activates the CpxAR two-component signal transduction system.
Resumo:
Ochratoxin A (OTA) is a mycotoxin and extrolite of fungi which has been reported in a range of foods. This study uses mammalian reporter gene assays (RGAs) with natural steroid receptors and the H295R steroidogenesis assay to assess the endocrine disrupting activity of OTA.
At the receptor level, OTA (within a concentration range of 0.25–2500 ng/ml) did not induce an agonistic response in an oestrogen, androgen, progestagen or glucocorticoid RGA. An antagonistic effect was observed in all of the RGAs at the highest concentration tested (2500 ng/ml). However, while there was no significant cytotoxic effect observed in the MTT (thiazolyl blue tetrazolium bromide) cell viability assay at this concentration, there was a corresponding change in cell morphology which may be related to the resulting antagonistic effect.
At the hormone production level, H295R cells were used as a steroidogenesis model and exposed to OTA (within a concentration range of 0.1–1000 ng/ml). Treatment of the cells with 1000 ng/ml OTA increased the production of estradiol (117 ± 14 ng/ml) over 3 times that of the solvent control (36 ± 9 pg/ml). Western blotting confirmed an increase in aromatase protein.
Overall the results indicate that OTA does not appear to interact with steroid receptors but has the potential to cause endocrine disruption by interfering with steroidogenesis. This is the first study identifying the effect OTA may have on production of the steroid hormone estradiol.