916 resultados para TYROSINE KINASE INHIBITORS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the world`s population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes p stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Imatinib mesylate (IM) is a selective tyrosine kinase inhibitor used for treating chronic myeloid leukemia (CML). IM has high efficacy, however some individuals develop a resistance due to impaired bio-availability. Polymorphisms in genes encoding membrane transporters such as ABCB1 have been associated with differences in protein expression and function that influence the response to several drugs. Aim: To investigate the relationship of ABCB1 polymorphisms with markers of response to IM in patients with CML Methods: One hundred eighteen CML patients initially treated with a standard dose of IM (400 mg/day) for 18 months were selected at two health centers in Sao Paulo City, Brazil. The response criteria were based on the European LeukemiaNet recommendations. ABCB1 polymorphisms c.1236C>T (rs1128503), c.3435C>T (rs1045642) and c.2677G>T/A (rs2032582) were evaluated by PCR-RFLP. Results: ABCB1 polymorphisms were not related with a risk for CML in this sample population (p<0.05). In the CML group, frequencies of ABCB1 SNPs were similar between responder and non-responder patients (p>0.05). In the responder group, the frequency of ABCB11236CT/2677GT/3435CT haplotype was higher in patients with major molecular response (MMR) (51.7%) than in patients without MMR (8.3%, p = 0.010). Furthermore, carriers of this haplotype had increased the probability of reaching the MMR compared with the non-carriers (OR: 11.8; 95% CI: 1.43-97.3, p = 0.022). Conclusions: The ABCB1 1236CT/2677GT/3435CT haplotype is positively associated with the major molecular response to IM in CML patients. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the beneficial effects of imatinib mesylate, some patients may either not respond or respond suboptimally. Here, we report two chronic myelogenous leukemia patients; one had a suboptimal response according to European LeukemiaNet criteria (a major molecular response was not achieved after 18 months of standard-dose imatinib therapy) and the other had failure with a standard dose of imatinib. At the time of the suboptimal response in patient 1 and the failure in patient 2, we were able to detect the F359I mutation in the BCR-ABL tyrosine kinase domain using DNA sequencing in both patients. Therefore, it was decided to change the therapeutic regimen to dasatinib at a dose of 100 mg once daily in both patients. This change resulted in the achievement of complete cytogenetic remission in patient 1 after 4 months and a major molecular response within 2 and 3 months in both patients. Detection of the F359I mutation in our two cases likely explains the suboptimal response to imatinib in case 1 and the failure in case 2. This implies that in such cases dasatinib should be considered to effectively suppress the mutated clones. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled "Local Signaling in Myocytes". (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymorphisms of the endothelial nitric oxide synthase (eNOS), matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) genes were shown to be associated with hypertensive disorders of pregnancy. However, epistasis is suggested to be an important component of the genetic susceptibility to preeclampsia (PE). The aim of this study was to characterize the interactions among these genes in PE and gestational hypertension (GH). Seven clinically relevant polymorphisms of eNOS (T-786C, rs2070744, a variable number of tandem repeats in intron 4 and Glu298Asp, rs1799983), MMP-9 (C-1562T, rs3918242 and -90(CA)(13-25), rs2234681) and VEGF (C-2578A, rs699947 and G-634C, rs2010963) were genotyped by TaqMan allelic discrimination assays or PCR and fragment separation by electrophoresis in 122 patients with PE, 107 patients with GH and a control group of 102 normotensive pregnant (NP) women. A robust multifactor dimensionality reduction analysis was used to characterize gene-gene interactions. Although no significant genotype combinations were observed for the comparison between the GH and NP groups (P>0.05), the combination of MMP-9-1562CC with VEGF-634GG was more frequent in NP women than in women with PE (P<0.05). Moreover, the combination of MMP-9-1562CC with VEGF-634CC or MMP-9-1562CT with VEGF-634CC or-634GG was more frequent in women with PE than in NP women (P<0.05). These results are obscured when single polymorphisms in these genes are considered and suggest that specific genotype combinations of MMP-9 and VEGF contribute to PE susceptibility. Hypertension Research (2012) 35, 917-921; doi:10.1038/hr.2012.60; published online 10 May 2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-alpha production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. (c) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the central nervous system (CNS), oligodendrocytes form the multilamellar and compacted myelin sheath by spirally wrapping around defined axons with their specialised plasma membrane. Myelin is crucial for the rapid saltatory conduction of nerve impulses and for the preservation of axonal integrity. The absence of the major myelin component Myelin Basic Protein (MBP) results in an almost complete failure to form compact myelin in the CNS. The mRNA of MBP is sorted to cytoplasmic RNA granules and transported to the distal processes of oligodendrocytes in a translationally silent state. A main mediator of MBP mRNA localisation is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 which binds to the cis-acting A2 response element (A2RE) in the 3’UTR of MBP mRNA. A signalling cascade had been identified that triggers local translation of MBP at the axon-glial contact site, involving the neuronal cell adhesion molecule (CAM) L1, the oligodendroglial plasma membrane-tethered Fyn kinase and Fyn-dependent phosphorylation of hnRNP A2. This model was confirmed here, showing that L1 stimulates Fyn-dependent phosphorylation of hnRNP A2 and a remodelling of A2-dependent RNA granule structures. Furthermore, the RNA helicase DDX5 was confirmed here acting together with hnRNP A2 in cytoplasmic RNA granules and is possibly involved in MBP mRNA granule dynamics.rnLack of non-receptor tyrosine kinase Fyn activity leads to reduced levels of MBP and hypomyelination in the forebrain. The multiadaptor protein p130Cas and the RNA-binding protein hnRNP F were verified here as additional targets of Fyn in oligodendrocytes. The findings point at roles of p130Cas in the regulation of Fyn-dependent process outgrowth and signalling cascades ensuring cell survival. HnRNP F was identified here as a novel constituent of oligodendroglial cytoplasmic RNA granules containing hnRNP A2 and MBP mRNA. Moreover, it was found that hnRNP F plays a role in the post-transcriptional regulation of MBP mRNA and that defined levels of hnRNP F are required to facilitate efficient synthesis of MBP. HnRNP F appears to be directly phosphorylated by Fyn kinase what presumably contributes to the initiation of translation of MBP mRNA at the plasma membrane.rnFyn kinase signalling thus affects many aspects of oligodendroglial physiology contributing to myelination. Post-transcriptional control of the synthesis of the essential myelin protein MBP by Fyn targets is particularly important. Deregulation of these Fyn-dependent pathways could thus negatively influence disorders involving the white matter of the nervous system.rnrn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regulatorische T-Zellen (Tregs) leisten durch ihre suppressiven Eigenschaften einen essenziellen Beitrag zur Aufrechterhaltung der immunologischen Toleranz. Sie verhindern schädliche Immunreaktionen gegen Autoantigene, kommensale Bakterien, sowie harmlose Nahrungsmittel-bestandteile. Gleichzeitig gewährleisten sie die Entwicklung effektiver Immunantworten gegen eindringende Pathogene, wie z.B. Parasiten, Bakterien und Viren. Damit haben Tregs direkten Einfluss auf das Gleichgewicht zwischen Immunität und Toleranz. Fehler in der suppressiven Funktionsweise von Tregs begünstigen daher auf der einen Seite die Entstehung zahlreicher autoimmuner Erkrankungen und Allergien. Auf der anderen Seite können Tregs Immunreaktionen bei chronischen Infektionen reduzieren, sowie die Entstehung effektiver Immunantworten gegen Tumore hemmen. Ihre Beteiligung an der Ätiologie all dieser Krankheiten macht Tregs zu einem bedeutenden potenziellen Zielobjekt, um diese Krankheiten effektiv zu therapieren. Die Erweiterung des Grundwissens um die molekularen Mechanismen der Treg-vermittelten Suppression ist daher ein notwendiger Schritt bei der Entwicklung Treg-basierter Theraphieansätze. 2003 konnte mit Foxp3 ein Transkriptionsfaktor identifiziert werden, der maßgeblich die suppressiven Funktionen von Tregs steuert. Um weiteren Einblick in die der Suppression zugrundeliegenden Signalwege zu erhalten, wurde im Institut für Immunologie ein komparativer Kinomarray durchgeführt, anhand dessen die Casein Kinase 2 (CK2) als eine der aktivsten Kinasen in Tregs identifiziert wurde (Daten freundlicherweise von Prof. Dr. Tobias Bopp bereitgestellt). rnBasierend auf den Ergebnissen des Kinomarrays wurde in dieser Arbeit die Funktion der CK2 in Tregs untersucht. Dabei konnte in in vitro Experimenten die Treg-vermittelte Suppression durch den pharmakologische CK2 Inhibitor DMAT aufgehoben werden. Weil derartige Inhibitoren jedoch nicht absolut spezifisch die Aktivität nur einer Kinase supprimieren, wurden außerdem Mäuse mit konditionalem „knockout“ der CK2β Untereinheit spezifisch in Tregs gekreuzt (CK2βTreg-/- Mäuse). Die Analyse dieser Tiere offenbarte eine essenzielle Beteiligung der CK2 an den suppressiven Funktionen von Tregs. So entwickeln CK2βTreg-/- Mäuse mit zunehmendem Alter Splenomegalien und Lymphadenopathien, von denen in besonderem Maße die Mukosa-assoziierten Lymphknoten betroffen sind. Eine Analyse des Aktivierungsstatus der T-Zellen in den Tieren konnte zudem einen erhöhten Anteil sogenannter Effektor-Gedächtnis T-Zellen aufdecken, die charakteristische Merkmale eines Th2 Phänotyps zeigten. Erhöhte Titer des Antikörperisotyps IgE in den Seren von CK2βTreg-/- Mäusen suggerieren zusätzlich eine fehlerhafte Suppression speziell Th2-vermittelter Immunantworten durch CK2β-defiziente Tregs. In Th2-vermittelten Asthma Experimenten in vivo konnte der Verdacht der fehlerhaften Kontrolle von Th2-Antwort bestätigt werden, wobei zusätzlich aufgedeckt wurde, dass bereits unbehandelte CK2βTreg-/- Mäuse Zeichen einer Entzündungsreaktion in der Lunge aufweisen. Bei der Suche nach den molekularen Ursachen der fehlerhaften Suppression Th2-vermittelter Immunantworten durch CK2β-defiziente Tregs konnten zwei mögliche Erklärungsansätze gefunden werden. Zum einen zeigen CK2β-defiziente Tregs eine verringerte Expression von Foxp3, was, in Analogie zu Ergebnissen der Gruppe von R. Flavell (Wang Y.Y. Nature. 445, 766-770 (2007)), zu einer Konversion von Tregs zu Th2 Zellen und damit zur Entstehung eines Th2-basierten, autoimmunen Phänotyps führt. Des Weiteren weisen CK2β-defiziente Tregs eine reduzierte Expression des Transkriptionsfaktors IRF4 auf, der in Tregs entscheidend für die Kontrolle Th2-basierter Immunreaktionen ist (Zheng Y. Nature. 19; 351-356 (2009)). Die dargelegten Ergebnisse identifizieren die CK2 damit als Kinase, die entscheidend an der Treg-vermittelten Suppression speziell Th2-basierter Immunantworten beteiligt ist. Demnach könnten pharmakologische CK2 Inhibitoren beispielsweise dazu eingesetzt werden, um die Treg-vermittelte Suppression im Rahmen chronischer Parasiten-Infektionen aufzuheben. Die in CK2βTreg-/- Mäusen beobachtete Prävalenz der Funktion der CK2 für Mukosa-assoziierte Organe stellt dabei einen zusätzlichen Vorteil dar, weil systemische Nebenwirkungen, die durch die Blockade der Treg-vermittelte Suppression entstehen, zumindest in nicht-Mukosa-assoziierten Geweben nicht zu erwarten sind.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: FMS-like tyrosine kinase 3 (FLT3) is a class III receptor tyrosine kinase involved in hematopoietic progenitor cell development. Mutations of FLT3 have been reported in about a third of patients with acute myeloid leukemia (AML), and inhibitors of FLT3 are of clinical interest. Sorafenib is an orally active multikinase inhibitor with potent activity against FLT3 and the Raf/ERK/MEK kinase pathway. METHODS: We studied the patterns of molecular response and relapse in 18 patients with mutated FLT3 treated with the combination of sorafenib, idarubicin, and cytarabine. RESULTS: The median follow-up was 9 months. Sixteen patients achieved complete remission (CR), and the other 2 patients achieved CR but lacked platelet recovery for an overall response rate of 100%. Ten patients had their FLT3-mutated clone eradicated, with 6 patients who showed some residual FLT3-mutated cells, and 2 patients who showed persistent FLT3-mutated cells. The elimination of FLT3-mutated population at the time of morphologic CR, however, was not predictive of relapse. After a median follow-up of 9 months (range, 1-16 months), 10 (55%) patients had relapsed, with a median CR duration of 8.8 months (range, 1-9.5 months). By DNA sequencing, there was no evidence of an acquired FLT3 point mutation at the time of relapse in 7 patients tested, which suggested the presence of other mechanisms of sorafenib resistance. CONCLUSION: Sorafenib, combined with chemotherapy, is effective in attaining CR, but relapses still occur.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deregulated activation of the Src tyrosine kinase and heightened Id1 expression are independent mediators of aggressive tumor biology. The present report implicates Src signaling as a critical regulator of Id1 gene expression. Microarray analyses showed that Id family genes were among the most highly down-regulated by incubation of A549 lung carcinoma cells with the small-molecule Src inhibitor AZD0530. Id1 transcript and protein levels were potently reduced in a dose-dependent manner concomitantly with the reduction of activated Src levels. These effects were conserved across a panel of lung, breast, prostate, and colon cancer cell lines and confirmed by the ability of PP2, Src siRNA, and Src-blocking peptides to suppress Id1 expression. PP2, AZD0530, and dominant-negative Src abrogated Id1 promoter activity, which was induced by constitutively active Src. The Src-responsive region of the Id1 promoter was mapped to a region 1,199 to 1,360 bps upstream of the translation start site and contained a Smad-binding element. Src was also required for bone morphogenetic protein-2 (BMP-2)-induced Id1 expression and promoter activity, was moderately activated by BMP-2, and complexed with Smad1/5. Conversely, Src inhibitors blocked Smad1/5 nuclear translocation and binding to the Src-responsive region of the Id1 promoter. Consistent with a role for Src and Id1 in cancer cell invasion, Src inhibitors and Id1 siRNA decreased cancer cell invasion, which was increased by Id1 overexpression. Taken together, these results reveal that Src positively interacts with the BMP-Smad-Id pathway and provide new ways for targeted inhibition of Id1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after treatment cessation. To assess the responses to irradiation and vascular endothelial growth factor-receptor tyrosine kinase inhibition (by the vascular endothelial growth factor tyrosine kinase inhibitor PTK787/ZK222854), mammary carcinoma allografts were investigated by vascular casting; electron, light, and confocal microscopy; and immunoblotting. Irradiation and anti-angiogenic therapy had similar effects on the tumor vasculature. Both treatments reduced tumor vascularization, particularly in the tumor medulla. After cessation of therapy, the tumor vasculature expanded predominantly by intussusception with a plexus composed of enlarged sinusoidal-like vessels containing multiple transluminal tissue pillars. Tumor revascularization originated from preserved alpha-smooth muscle actin-positive vessels in the tumor cortex. Quantification revealed that recovery was characterized by an angiogenic switch from sprouting to intussusception. Up-regulated alpha-smooth muscle actin-expression during recovery reflected the recruitment of alpha-smooth muscle actin-positive cells for intussusception as part of the angio-adaptive mechanism. Tumor recovery was associated with a dramatic decrease (by 30% to 40%) in the intratumoral microvascular density, probably as a result of intussusceptive pruning and, surprisingly, with only a minimal reduction of the total microvascular (exchange) area. Therefore, the vascular supply to the tumor was not severely compromised, as demonstrated by hypoxia-inducible factor-1alpha expression. Both irradiation and anti-angiogenic therapy cause a switch from sprouting to intussusceptive angiogenesis, representing an escape mechanism and accounting for the development of resistance, as well as rapid recovery, after cessation of therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.