981 resultados para TGF-beta1
Resumo:
Disseminated leishmaniasis (DL) is an emerging form of Leishmania braziliensis infection characterised by multiple cutaneous lesions on different parts of the body and a high rate of mucosal involvement. Systemic production of TNF alpha and IFN-gamma in DL patients is lower than in cutaneous leishmaniasis (CL) caused by L braziliensis, which may account for parasite dissemination due to the decreased ability to control parasite growth. In this study, the systemic and in situ immune response of DL and CL patients was characterised through evaluation of chemokine and cytokine production. In situ evaluation showed similar production of IFN gamma, TNF alpha, IL-10, transforming growth factor-beta (TGF beta), chemokine (C-C motif) ligand 2 (CCL2), CCL3, CCL11 and chemokine (C-X-C motif) ligand 10 (CXCL10) in papular and ulcerative lesions from DL as well as in ulcerated lesions from CL. Serum levels of CXCL9, a chemokine that attracts 1-cells, was higher in serum from DL than from CL These data indicate that a decrease in the type 1 immune response in peripheral blood of DL patients is due to attraction of Leishmania antigen-activated T-cells to the multiple cutaneous lesions. This may account for the absence of or few parasites in the lesions and for the development of ulcers similar to those observed in CL (C) 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective and study design: A case-control study was conducted on 42 Brazilian women presenting with human papilloma virus (HPV) infection and cervical lesion and 87 HPV-negative women to evaluate single nucleotide polymorphisms observed in TNF-alpha, TGF-beta, IL-10, IL-6, and IFN-gamma genes. Results and conclusion: No significant association was observed on the cytokine polymorphisms analyzed in this series. Larger studies using cytokine polymorphisms may be useful for providing further information regarding their influence or not in HPV-related cervical lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The hantavirus pulmonary syndrome (HPS) is an emerging syndrome in the Americas. The disease results from intense immune activation and changes in vascular permeability. The aim of this study was to determine the profile of serum cytokines in HPS patients looking for correlation with the clinical parameters, severity and outcome of illness. Studying 21 HPS patients, we found that IL-6 may have an important role in the pathogenesis of HPS, being associated with fatal outcome. Our results also support a mixed Th1/Th2 immune response during the course of HPS and that the magnitude of Th1 response effector cytokines is correlated to HPS severity. The decreased levels of TGF-beta observed in HPS patients suggest that immunoregulatory activity could be damaged in these patients. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
In the present study, BALB/c mice were used to develop a model for the hepatic injury associated to dengue infection. Histological analysis after subcutaneous inoculation with a low viral dose of dengue-2 virus showed Kupffer cell hyperplasia and an increased inflammatory cellular infiltrate next to the bile ducts on days 5, 7 and 14 post-inoculation, mainly characterized by the presence of mononuclear cells. The liver mRNA transcription level of IL-1 beta was highest on the 5th day post-infection (p.i.) and decreased by the 21st day, TNF-alpha showed a peak of mRNA transcription after 14 days p.i. coinciding with the regression of cellular infiltrates and elevated expression of TGF-beta mRNA. Serum AST and ALT levels were slightly elevated at 7 and 14 days post-infection. Dengue-2 RNA levels were undetectable in the liver on any of the days following inoculation. Our observations suggest that, as it is true for humans, the animals undergo a transient and slight liver inflammation, probably due to local cytokine production and cellular infiltration in the liver. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The strong inflammatory reaction that occurs in the heart during the acute phase of Trypanosoma cruzi infection is modulated by cytokines and chemokines produced by leukocytes and cardiomyocytes. Matrix metalloproteinases (MMPs) have recently emerged as modulators of cardiovascular inflammation. In the present study we investigated the role of MMP-2 and MMP-9 in T. cruzi-induced myocarditis, by use of immunohistochemical analysis, gelatin zymography, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction to analyze the cardiac tissues of T. cruzi-infected C57BL/6 mice. Increased transcripts levels, immunoreactivity, and enzymatic activity for MMP-2 and MMP-9 were observed by day 14 after infection. Mice treated with an MMP inhibitor showed significantly decreased heart inflammation, delayed peak in parasitemia, and improved survival rates, compared with the control group. Reduced levels of cardiac tumor necrosis factor-alpha, interferon-gamma, serum nitrite, and serum nitrate were also observed in the treated group. These results suggest an important role for MMPs in the induction of T. cruzi-induced acute myocarditis.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.
Resumo:
Some studies have demonstrated the involvement of nuclear factor-kappa B (NF-kB) in the pathogenesis of glomerulonephritis. The aim of our study was twofold: (1) to analyze the prognostic value of NF-kB expression in primary IgA nephropathy (IgAN) and (2) to compare the results of NF-kB expression by immunohistochemistry (IHC) and southwestern histochemistry (SWH). We analyzed 62 patients diagnosed with IgAN from 1987 to 2003. We used monoclonal antibodies to CD68 and mast cell tryptase and polyclonal antibodies to TGF-beta 1, alpha-SMA and NF-kB p65. We used SWH for the in situ detection of activated NF-kB. The results showed that NF-kB expression (mainly by SWH) correlated with clinical and histological parameters. An unfavorable clinical course of IgAN was significantly related to tubular NF-kB expression by SWH, but not by IHC. The Kaplan-Meier curves demonstrated that increased NF-kB expression, which was measured by IHC and SWH, decreased renal survival. In conclusion, the increased expression of NF-kB in the tubular area may be a predictive factor for the poor prognosis of patients with IgAN. Compared with IHC, NF-kB expression determined by SWH was correlated with a larger number of parameters of poor disease outcome.
Resumo:
Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Resumo:
Background Porphyria cutanea tarda (PCT) is a metabolic disease characterized by vesicles and blisters in sun-exposed areas and scleroderma-like lesions in sun-exposed and non-sun-exposed areas. Mast cells participate in the pathogenesis of bullous diseases and diseases that show sclerosis, including PCT. Moreover, transforming growth factor-beta (TGF-beta) is the main cytokine in the development of tissue sclerosis. The correlation of mast cells and TGF-beta with the lesions of PCT has not been examined, however. The possible role of mast cells and TGF-beta (and the relationship between them) in the development of PCT lesions is discussed. Methods To quantify mast cells and cells expressing TGF-beta in skin samples from patients with PCT and controls, immunohistochemical studies were performed in tissue sections allied to morphometric analyses. Results The numbers of mast cells and cells expressing TGF-beta per square millimiter were increased in the PCT group relative to controls, and there was a direct and significant correlation between the mast cell number and cells expressing TGF-beta in PCT. Conclusions The results suggest that the increased number of mast cells and of cells expressing TGF-beta, as well as their direct correlation, may contribute to the pathogenesis of the skin lesions in PCT.
Resumo:
Periodontal disease is a chronic inflammation of the attachment structures of the teeth, triggered by potentially hazardous microorganisms and the consequent immune-inflammatory responses. In humans, the T helper type 17 (Th17) lineage, characterized by interleukin-17 (IL-17) production, develops under transforming growth factor-beta (TGF-beta), IL-1 beta, and IL-6 signaling, while its pool is maintained by IL-23. Although this subset of cells has been implicated in various autoimmune, inflammatory, and bone-destructive conditions, the exact role of T lymphocytes in chronic periodontitis is still controversial. Therefore, in this study we investigated the presence of Th17 cells in human periodontal disease. Gingival and alveolar bone samples from healthy patients and patients with chronic periodontitis were collected and used for the subsequent assays. The messenger RNA expression for the cytokines IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 in gingiva or IL-17 and receptor activator for nuclear factor-kappa B ligand in alveolar bone was evaluated by real-time polymerase chain reaction. The production of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 proteins was evaluated by immunohistochemistry and the presence of Th17 cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and IL-17 colocalization. Our data demonstrated elevated levels of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 messenger RNA and protein in diseased tissues as well as the presence of Th17 cells in gingiva from patients with periodontitis. Moreover, IL-17 and the bone resorption factor RANKL were abundantly expressed in the alveolar bone of diseased patients, in contrast to low detection in controls. These results provided strong evidence for the presence of Th17 cells in the sites of chronic inflammation in human periodontal disease.
Resumo:
Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.
Resumo:
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4(+)CD25(+) T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4(+)CD25(+)GITR(+)Foxp3(+) T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4(+), CD8(+), and CCR5(+) leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Common features such as elastic fibre destruction, mucoid accumulation, and smooth muscle cell apoptosis are co-localized in aneurysms of the ascending aorta of various aetiologies. Recent experimental studies reported an activation of TGF-beta in aneurysms related to Marfan (and Loeys-Dietz) syndrome. Here we investigate TGF-beta signalling in normal and pathological human ascending aortic wall in syndromic and non-syndromic aneurysmal disease. Aneurysmal ascending aortic specimens, classified according to aetiology: syndromic MFS (n = 15, including two mutations in TGFBR2), associated with BAV (n = 15) or degenerative forms (n = 19), were examined. We show that the amounts of TGF-beta 1 protein retained within and released by aneurysmal tissue were greater than for control aortic tissue, whatever the aetiology, contrasting with an unchanged TGF-beta 1 mRNA level. The increase in stored TGF-beta 1 was associated with enhanced LTBP-I protein and mRNA levels. These dysiregulations of the extracellular ligand are associated with higher phosphorylated Smad2 and Smad2 mRNA levels in the ascending aortic wall from all types of aneurysm. This activation correlated with the degree of elastic fibre fragmentation. Surprisingly, there was no consistent association between the nuclear location of pSmad2 and extracellular TGF-beta 1 and LTBP-I staining and between their respective mRNA expressions. In parallel, decorin. was focally increased in aneurysmal media, whereas biglycan was globally decreased in aneurysmal aortas. In conclusion, this study highlights independent dysregulations of TGF-beta retention and Smad2 signalling in syndromic and non-syndromic aneurysms of the ascending aorta. Copyright (C) 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Fibrinolytic activity is associated with presence of cystic medial degeneration in aneurysms of the ascending aorta Aims: Thoracic ascending aortic aneurysms (TAA) are characterized by elastic fibre breakdown and cystic medial degeneration within the aortic media, associated with progressive smooth muscle cell (SMC) rarefaction. The transforming growth factor (TGF)-beta/Smad2 signalling pathway is involved in this process. Because the pericellular fibrinolytic system activation is able to degrade adhesive proteins, activate matrix metalloproteinase (MMP), induce SMC disappearance and increase the bioavailability of TGF-beta, the aim was to investigate the plasminergic system in TAA. Methods and results: Ascending aortas [21 controls and 19 TAAs (of three different aetiologies)] were analysed. Immunohistochemistry showed accumulation of t-PA, u-PA and plasmin in TAAs, associated with residual SMCs. Overexpression of t-PA and u-PA was confirmed by reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting and zymography on TAA extracts and culture medium conditioned by TAA. Plasminogen was present on the SMC surface and inside cytoplasmic vesicles, but plasminogen mRNA was undetectable in the TAA medial layer. Plasmin-antiplasmin complexes were detected in TAA-conditioned medium and activation of the fibrinolytic system was associated with increased fibronectin turnover. Fibronectin-related material was detected immunohistochamically in dense clumps around SMCs and colocalized with latent TGF-beta binding protein-1. Conclusions: The fibrinolytic pathway could play a critical role in TAA progression, via direct or indirect impact on ECM and consecutive modulation of TGF-beta bioavailability.
Resumo:
Neospora caninum is one of the main causes of abortion and natimortality in cattle. Host immune defense is capable to inhibit tachyzoite activity during acute infection, but there is no action against bradyzoites in tissue cysts. Activation and modulation of this response is controlled by cell mediators. The real-time RT-PCR technique was employed to detect some of those mediators during N. caninum infection. Holstein and Nelore calves intramuscularly infected with tachyzoites and uninfected controls were slaughtered at the sixth day post-infection and popliteal lymph node, liver and brain cortex samples were analyzed. Real-time RT-PCR detected gene expression in all tissues. No significant variation of GAPDH gene expression was detected among groups, its amplification efficiency was similar to the other genes tested and it was used as the endogenous control for the analysis. Comparisons between infected and uninfected groups allowed the relative gene expression quantification. IFN-gamma and TNF-alpha genes showed increased expression in some samples. iNOS and TGF-beta 1 genes had some non-significant variations and IL-4 and IL-10 stayed pratically inaltered.