999 resultados para TEMPERATURE-GROWN GAAS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrical activity of defects in GaAs grown on GaAs substrates doped with Si and Be by both conventional molecular beam epitaxy (MBE) and atomic hydrogen-assisted MBE (H-MBE) were characterized by deep level transient spectroscopy. The trap densities are significantly reduced in the homoepitaxial GaAs grown by H-MBE compared to that grown by MBE. The reduction of trap densities is attributed to in situ passivation of these defects by atomic H during the growth. The improvement characteristics of GaAs materials will be significance for fabrication of semiconductor devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-organized In0.55Al0.45As/Al0.50Ga0.50As quantum dots are grown by the Stranski-Krastanow growth mode using molecular beam epitaxy on the GaAs(311)A substrate. The optical properties of type-II InAlAs/AlGaAs quantum dots have been demonstrated by the excitation power and temperature dependence of photoluminescence spectra. A simple model accounting for the size-dependent band gap of quantum dots is given to qualitatively understand the formation of type-II In0.55Al0.45As/Al0.50Ga0.50As quantum dots driven by the quantum-confinement-induced Gamma --> X transition. The results provide new insights into the band structure of InAlAs/AlGaAs quantum dots. (C) 2000 American Institute of Physics. [S0003-6951(00)00725-7].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cubic InxGa1-xN films were successfully grown on GaAs(001) substrates by metalorganic chemical-vapor deposition. The values of x content ranging from 0.10 to 0.24 obtained at different growth conditions were measured by double-crystal x-ray diffraction (XRD). The perpendicular and parallel elastic strain of the In0.2Ga0.8N layer, epsilon(perpendicular to)=0.4% and epsilon(parallel to)=-0.4% for GaN and epsilon(perpendicular to)=0.37% and epsilon(parallel to)=-0.37% for InGaN, respectively, were derived using the XRD measurements. The inhomogeneous strain and the average grain size of the In0.2Ga0.8N/GaN films were also studied by XRD. Photoluminescence spectra were used to measure the optical characterization of the InxGa1-xN thin films with different In composition, and the near-band-edge emission dependence of cubic InxGa1-xN on the x value is nearly linear with In content x less than or equal to 0.24. (C) 2000 American Institute of Physics. [S0021-8979(00)03908-6].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We reported the optical properties of self-assembled In0.55Al0.45As quantum dots grown by molecular beam epitaxy on (001) and (n11)A/B(n = 3,5)GaAs substrates. Two peaks were observed in the photoluminescence (PL) spectra from quantum dots in the (001) substrate and this suggested two sets of quantum dots different in size. For quantum dots in the high-index substrates, the PL spectra were related to the atomic-terminated surface (A or B substrate). The peaks for the B substrate surfaces were in the lower energy position than that for the (001) and A type. In addition, quantum dots in the B substrate have comparatively high quantum efficiency. These results suggested that high-index B-type substrate is more suitable for the fabrication of quantum dots than (001) and A-type substrates at the same growth condition. (C) 2000 American Vacuum Society. [S0734-211X(00)04701-6].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Postgrowth rapid thermal annealing was used to study the relaxation mechanism and optical properties of InGaAs/GaAs self-assembled quantum dots superlattice grown by molecular beam epitaxy. It is found that a significant narrowing of the luminescence linewidth (from 80 to 42 meV) occurs together with about 86 meV blue shift at annealing temperature up to 950 degrees C. Double crystal X-ray diffraction measurements show that the intensity of the satellite diffraction peak, which corresponds to the quantum dots superlattice, decreased with the increasing annealing temperature and disappeared at 750 degrees C, but recovered and increased again at higher annealing temperatures. This behavior can be explained by two competing relaxation mechanisms; interdiffusion and favored migration. The study indicates that a suitable annealing treatment can improve the structural properties of the quantum dots superlattice. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural properties of Semi-insulating gallium arsenide (SI-GaAs) crystal grown with power-travelling technique in space have been studied by double-crystal x-ray diffractometry and chemical etching. The quality of the crystal was first evaluated by x-ray rocking-curve method. The full width at half maximum of x-ray rocking curve in space-grown SI-GaAs is 9.4+/-0.08 are seconds. The average density of dislocations revealed by molten KOH is 2.0 X 10(4) cm(-2), and the highest density is 3.1 X 10(4) cm(-2). The stoichiometry in the single crystal grown in space is improved as well. Unfortunately, the rear of the ingot grown in space is polycrystalline owing to being out of control of power. (C) 1999 COSPAR. Published by Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The room temperature Raman spectra of the Ga(0.5)Al(0.5)AS and the In0.52Al0.48As epilayer grown on [n11]-oriented substrates were measured in various back scatterng geometries, The relative intensity of TO modes and LO modes in those samples shows a regular Variation with differently oriented substrates in the experiments. By comparing experimental data with Raman scattering selection rules for the zincblende structure epilayer grown on [n11]-oriented substrates, it was found that the present calculations are in good agreement with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epitaxial layers of cubic GaN have been grown by metalorganic vapor-phase epitaxy (MOVPE) with Si-doping carrier concentration ranging from 3 x 10(18) to 2.4 x 10(20)/cm(3). Si-doping decreased the yellow emission of GaN. However, the heavily doped n-type material has been found to induce phase transformation. As the Si-doping concentration increases, the hexagonal GaN nanoparticles increase. Judged from the linewidth of X-ray rocking curve, Si-doping increases the density of dislocations and stacking faults. Based on these observations, a model is proposed to interpret the phase transformation induced by the generated microdefects, such as dislocations and precipitates, and induced stacking faults under heavy Si-doping. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(3 1 1)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows differing from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-As-x solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [0 1 (1) over bar] and [(2) over bar 3 3], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between the neighboring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. The photoluminescence (PL) result demonstrates that QDs grown on (3 1 1)B have the narrowest linewidth and the strongest integrated intensity, compared to those on (1 0 0) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A ZnTe layer grown on GaAs substrate by hot-wall epitaxy (HWE) was studied using transmission electron microscopy (TEM). For a (110) cross-sectional specimen, its (001) ZnTe/GaAs interface was analysed by large angle stereo-projection (LASP) and high resolution electron microscopy (HREM). In the LASP, a double diffraction occurred and moire fringes were formed, meanwhile misfit dislocations were revealled clearly by weak beam technique. In HREM, not only Lomer and 60 degrees types of misfit dislocations were observed, but also two types of stacking faults were analysed. The residual strain was estimated by both methods.