906 resultados para Soybean -- Biotechnology
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recently, a notable shift in weed patterns has occurred in some soybean growing regions, as a result of tillage system change and herbicide use. The weed communities are very diversified and strongly interfere with soybean growth and productivity, especially when the shading of superior leaves of the canopy occurs. Some changes to certain agricultural practices, such as cultivars, row spacing and sowing density, were studied and were considered suitable for the establishment of an integrated weed management system under Brazilian conditions. -from Author
Resumo:
During the period from October/92 to September/94 experiments were carried out at the Seed Laboratory, FCAV/UNESP, Jaboticabal, SP, Brazil, using soybean seeds of different genotypes in order to evaluate the effect of genotype on the electrical conductivity (bulk conductivity) of soaked seeds. Seed moisture content (105 ± 3°C, 24 h), standard germination (four 50-seed samples, paper towel, 30°C), and vigor-accelerated aging (42°C, 48 h) were first determined. Undamaged soybean seeds were soaked in deionized water (four 50-seed samples, 75 ml, 25°C, 24 h) and electrical conductivity (μmhos.cm+1.g+1) was measured. Significant differences in conductivity were observed among genotypes having the same pattern of germination and vigor. The results have showed that electrical conductivity can be significantly influenced by genotype.
Resumo:
The relationship between soil fungi and actinomycetes, with rhizobia that produce nodulation in Neonotonia wightii (perennial soybean) was studied in culture medium in order to obtain material to be used in mixed inoculations of this legume. A field experiment was designed to provide soil samples and isolate microorganisms belonging to these groups that are capable of interfering in the development of two selected rhizobium strains. Results show that the Bradyrhizobium strains used in the experiment, which are efficient in nodulation of Neonotonia wightii, are highly sensitive to substances produced in the culture medium by actinomycetes and fungi.
Resumo:
The interactions of two fungal biocontrol agents, Alternaria cassiae and Pseudocercospora nigricans, and soybean planting density on sicklepod mortality and dry weight were studied in the field over 2 yr. The experimental field was divided into three equal areas: one without soybean and two where the soybean was sown in densities of 20 and 36 seeds per meter row with a 0.95-m row spacing. The fungi were sprayed alone or in a mixture at three growth stages of sicklepod plants grown at three levels of crop interference resulting from the three soybean planting densities. The fungal treatments were: an untreated control, A. cassiae (105 spores/m2), P. nigricans (3.3 g mycelium/m2), and the mixture of these two fungi. Sicklepod was at the cotyledonary leaf, two-leaf, and four-leaf stages when treated. Alternaria cassiae was most effective in reducing both sicklepod survival and dry weight. The mixture of P. nigricans and A. cassiae was generally comparable to but not better than A. cassiae alone in killing the weed (mortality) and reducing its growth (dry weight). Soybean density did not have significant effects on the mortality or the dry weight of sicklepod. Thus, there is no advantage to combining the highly effective biocontrol agent A. cassiae with the less effective P. nigricans or with soybean interference to control sicklepod. However, the results validate the efficacy of A. cassiae by itself as a bioherbicide.
Resumo:
The soybean cyst nematode (Heterodera glycines) has become an increasingly severe problem in soybean production areas in Brazil. The development and use of resistant cultivars is the most efficient method of minimizing losses due to this pathogen. Our objective was to test the efficiency of an alternative method for screening soybean genotypes for resistance to H. glycines in field plots. The alternative method was compared to the standard method of sowing the test genotypes in fields found to be infested during the previous crop season. In the alternative method, the test genotypes are sown in the furrow following the uprooting of 45-day-old infected plants. The alternative method resulted in twice the cyst population and fewer escapes, and more consistent results than the standard method. The major advantage of the alternative method is that it permits screening in a more homogeneous distribution of H. glycines in the soil.
Resumo:
Seeds from six soybean cultivars (Cristalina, IAC 31-Foscarin, IAC-15, UFV-10, IAC-14 and IAS-5) and from five soybean cultivars (IAC 31-Foscarin, IAC-15, IAC-14, IAS-5 and Iguacu) were evaluated in 1993 and 1994, respectively, in terms of physiological seed quality by the mechanical damage (MD), standard germination (SG), accelerated aging (AA), electrical conductivity (EC), and seedling field emergence (FE) tests. Significant correlations were detected between SG, AA and EC and FE. However, in terms of the cultivar or the year, the degree of association among these parameters can change based on the environmental conditions of each year.
Resumo:
Ferulic acid uptake by soybean root in nutrient culture was investigated by the depletion method at different concentrations, temperatures and pH. Results showed that soybean roots absorbed this compound at greater rates in the concentrations between 0.05-mM and 1.0-mM and it was concentration dependent. Ferulic acid uptake was unaffected at pH 4.5 or 6.0 but reduced at pH 7.0. At pH 6.0, uptake rates decreased significantly with increasing temperature of nutrient solution.
Resumo:
Sodium (Na+) and chloride (Cl-) nutritional requirements, dietary electrolyte balance (DEB), and their effects on acid-base balance, litter moisture, and tibial dyschondroplasia (TD) incidence for young broiler chickens were evaluated in two trials. One-day-old Cobb broilers were distributed in a completely randomized design with six treatments, five replicates, and 50 birds per experimental unit. Treatments used in both experiments were a basal diet with 0.10% Na+ (Experiment 1) or Cl- (Experiment 2) supplemented to result in diets with Na+ or Cl- levels of 0.10, 0.15, 0.20, 0.25 ,0.30, or 0.35%, respectively. In Experiment 1, results indicated an optimum Na+ requirement of 0.26%. Sodium levels caused a linear increase in arterial blood gas parameters, indicating an alkalogenic effect of Na+. The hypertrophic area of growth plate in the proximal tibiotarsi decreased with Na+ levels. The TD incidence decreased with increases in dietary Na+. Litter moisture increased linearly with sodium levels. In Experiment 2, the Cl- requirement was estimated as 0.25%. Chloride levels caused a quadratic effect (P ≤ 0.01) on blood gas parameters, with an estimated equilibrium [blood base excess (BE) = 0] at 0.30% of dietary CT-. No Cl- treatment effects (P ≥ 0.05) were observed on litter moisture or TD incidence. The best DEB for maximum performance was 298 to 315 mEq/kg in Experiment 1 and 246 to 264 mEq/kg in Experiment 2. We concluded that the Na+ and Cl- requirements for optimum performance of young broiler chickens were 0.28 and 0.25%, respectively.
Resumo:
The objective of this research was to investigate how the allelochemical ferulic acid affects the carbohydrate and lipid contents of soybean roots cultivated in nutrient culture. The results presented revealed that ferulic acid has significant effects on carbohydrates by the increase in xylose, fructose and sucrose and decrease in glucose, after 24 h treatment of roots. Ferulic acid increased the contents of saturated and unsaturated fatty acids of the polar and non-polar lipid fractions. The results may contribute as additional data to explain allelopathic effects caused by ferulic acid.
Resumo:
Rhizoctonia solani causes pre- and post-emergence damping-off, root and hypocotyl rot and foliar blight in soybean. Foliar blight has resulted in yield losses of 31-60% in north and northeast Brazil. The aim of this study was to characterize isolates of R. solani associated with soybean in Brazil. Among 73 Rhizoctonia isolates examined, six were binucleate and 67 were multinucleate. The multinucleate isolates were characterized according to hyphal anastomosis reaction, mycelial growth rate, thiamine requirement, sclerotia production, and RAPD molecular markers. Four isolates that caused hypocotyl rot belonged to AG-4 and using RAPD analysis they grouped together with the HGI subgroup. Another isolate that caused root and hypocotyl rots was thiamine auxotrophic, grew at 35 °C, and belonged to AG-2-2 IIIB. All 62 isolates that caused foliar blight belonged to AG-1 IA. RAPD analysis of R. solani AG-1 IA soybean isolates showed high genetic similarity to a tester strain of AG-1 IA, confirming their classification. The teleomorph of R. solani, Thanatephorus cucumeris was produced in vitro by one AG-1 IA isolate from soybean. The AG-4 and AG-2-2 IIIB isolates caused damping-off and root and hypocotyl rots of soybean seedlings cv. 'FT-Cristalina', under greenhouse conditions. The AG-2-2 IIIB isolate caused large lesions on the cortex tissue, that was distinct from the symptoms caused by AG-4 isolates. The AG-1 IA isolates caused foliar blight in adult soybean plants cv. 'Xingu' under the greenhouse and also in a detached-leaf assay.
Resumo:
Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC10C10 predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha2C10C10 predominantly. © 2005 American Chemical Society and American Institute of Chemical Engineers.
Resumo:
The objective of this research was to investigate the potential of xylanase production by Aspergillus japonicus and to determine the effects of cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature for enzyme and biomass production was 25°C; however, the best carbon source for growth (determined by the Bioscreen C) did not turn out to be a good inducer of xylanase production. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran (without the addition of any other carbon source) using a spore concentration of 1 × 107 spores/mL (25°C, pH 5.0, 120 h). A. japonicus is a good xylanase producer under the conditions presented in these assays. © 2006 Academic Journals.
Fatty acid production by four strains of Mucor hiemalis grown in plant oil and soluble carbohydrates
Resumo:
Four Mucor hiemalis strains (M1, M2, M3 and M4), isolated from soil at a depth of 0 - 15 cm in the Juréia-Itatins Ecology Station (JIES), in the state of São Paulo, Brazil and were evaluated for the production of γ-linolenic (GLA) and other unsaturated fatty acids. Five growth variables (temperature, pH, carbon source, nitrogen source, and vegetable oils) were studied. Liquid media containing 2% vegetable oil (palm oil, canola oil, soybean oil, sesame oil, or sunflower oil) or 2% carbohydrate (fructose, galactose, glycerol, glucose, lactose, maltose, sucrose, sorbitol or xylose) and 1% yeast extract as a nitrogen source were used. The greatest biomass production was observed with M3 and M4 strains in palm oil (91.5 g l -1) and sunflower oil (68.3 g l -1) media, respectively. Strain M4 produced greater quantities of polyunsaturated acids in medium containing glucose. The GLA production in the M4 biomass was 1,132.2 mg l -1 in glucose medium. Plant oils were inhibitors of fatty acid production by these strains. © 2007 Academic Journals.
Resumo:
This work was aimed at evaluating the antioxidant activity of rosemary extract added to soybean oil in thermoxidation conditions. Purified soybean oil, refined soybean oil and refined soybean oil containing 1,000 mg/kg rosemary extract were heated at 180°C. The oxidation of the samples was evaluated after 0, 2.5, 5, 7.5 and 10 hours of thermoxidation by means of oxidative stability determination, total polar compounds and conjugated dienes. The purified oil differed significantly from the refined oil, mainly in relation to oxidative stability due the removal of the natural antioxidants. Rosemary extract presented antioxidant effects at high temperatures. After 10 hours of heating, 1,000 mg/kg rosemary extract added to the refined soybean oil significantly increased the oil oxidative stability from 7.52 to 13.5 hours and decreased the formation of polymers and decomposing products measured through the polar rates from 17.35 to 7.99%. The build up of primary oxidation products gauged through diene rates also decreased from 1.61 to 0.80%. Rosemary extract could be recommended as an alternative antioxidant.