880 resultados para Shape prediction
Resumo:
Objective Analyzing the effect of urinary incontinence as a predictor of the incidence of falls among hospitalized elderly. Method Concurrent cohort study where 221 elderly inpatients were followed from the date of admission until discharge, death or fall. The Kaplan-Meier methods, the incidence density and the Cox regression model were used for the survival analysis and the assessment of the association between the exposure variable and the other variables. Results Urinary incontinence was a strong predictor of falls in the surveyed elderly, and was associated with shorter time until the occurrence of event. Urinary incontinence, concomitant with gait and balance dysfunction and use of antipsychotics was associated with falls. Conclusion Measures to prevent the risk of falls specific to hospitalized elderly patients who have urinary incontinence are necessary.
Resumo:
[Mazarinade. 1650]
Resumo:
We present simple procedures for the prediction of a real valued sequence. The algorithms are based on a combinationof several simple predictors. We show that if the sequence is a realization of a bounded stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. We offer an analog result for the prediction of stationary gaussian processes.
Resumo:
Sequential randomized prediction of an arbitrary binary sequence isinvestigated. No assumption is made on the mechanism of generating the bit sequence. The goal of the predictor is to minimize its relative loss, i.e., to make (almost) as few mistakes as the best ``expert'' in a fixed, possibly infinite, set of experts. We point out a surprising connection between this prediction problem and empirical process theory. First, in the special case of static (memoryless) experts, we completely characterize the minimax relative loss in terms of the maximum of an associated Rademacher process. Then we show general upper and lower bounds on the minimaxrelative loss in terms of the geometry of the class of experts. As main examples, we determine the exact order of magnitude of the minimax relative loss for the class of autoregressive linear predictors and for the class of Markov experts.
Resumo:
Objectives The relevance of the SYNTAX score for the particular case of patients with acute ST- segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) has previously only been studied in the setting of post hoc analysis of large prospective randomized clinical trials. A "real-life" population approach has never been explored before. The aim of this study was to evaluate the impact of the SYNTAX score for the prediction of the myocardial infarction size, estimated by the creatin-kinase (CK) peak value, using the SYNTAX score in patients treated with primary coronary intervention for acute ST-segment elevation myocardial infarction. Methods The primary endpoint of the study was myocardial infarction size as measured by the CK peak value. The SYNTAX score was calculated retrospectively in 253 consecutive patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) in a large tertiary referral center in Switzerland, between January 2009 and June 2010. Linear regression analysis was performed to compare myocardial infarction size with the SYNTAX score. This same endpoint was then stratified according to SYNTAX score tertiles: low <22 (n=178), intermediate [22-32] (n=60), and high >=33 (n=15). Results There were no significant differences in terms of clinical characteristics between the three groups. When stratified according to the SYNTAX score tertiles, average CK peak values of 1985 (low<22), 3336 (intermediate [22-32]) and 3684 (high>=33) were obtained with a p-value <0.0001. Bartlett's test for equal variances between the three groups was 9.999 (p-value <0.0067). A moderate Pearson product-moment correlation coefficient (r=0.4074) with a high statistical significance level (p-value <0.0001) was found. The coefficient of determination (R^2=0.1660) showed that approximately 17% of the variation of CK peak value (myocardial infarction size) could be explained by the SYNTAX score, i.e. by the coronary disease complexity. Conclusion In an all-comers population, the SYNTAX score is an additional tool in predicting myocardial infarction size in patients treated with primary percutaneous coronary intervention (PPCI). The stratification of patients in different risk groups according to SYNTAX enables to identify a high-risk population that may warrant particular patient care.
Resumo:
1.1 Fundamentals Chest pain is a common complaint in primary care patients (1 to 3% of all consultations) (1) and its aetiology can be miscellaneous, from harmless to potentially life threatening conditions. In primary care practice, the most prevalent aetiologies are: chest wall syndrome (43%), coronary heart disease (12%) and anxiety (7%) (2). In up to 20% of cases, potentially serious conditions as cardiac, respiratory or neoplasic diseases underlie chest pain. In this context, a large number of laboratory tests are run (42%) and over 16% of patients are referred to a specialist or hospitalized (2).¦A cardiovascular origin to chest pain can threaten patient's life and investigations run to exclude a serious condition can be expensive and involve a large number of exams or referral to specialist -‐ often without real clinical need. In emergency settings, up to 80% of chest pains in patients are due to cardiovascular events (3) and scoring methods have been developed to identify conditions such as coronary heart disease (HD) quickly and efficiently (4-‐6). In primary care, a cardiovascular origin is present in only about 12% of patients with chest pain (2) and general practitioners (GPs) need to exclude as safely as possible a potential serious condition underlying chest pain. A simple clinical prediction rule (CPR) like those available in emergency settings may therefore help GPs and spare time and extra investigations in ruling out CHD in primary care patients. Such a tool may also help GPs reassure patients with more common origin to chest pain.
Resumo:
Although both inflammatory and atherosclerosis markers have been associated with coronary heart disease (CHD) risk, data directly comparing their predictive value are limited. The authors compared the value of 2 atherosclerosis markers (ankle-arm index (AAI) and aortic pulse wave velocity (aPWV)) and 3 inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)) in predicting CHD events. Among 2,191 adults aged 70-79 years at baseline (1997-1998) from the Health, Aging, and Body Composition Study cohort, the authors examined adjudicated incident myocardial infarction or CHD death ("hard" events) and "hard" events plus hospitalization for angina or coronary revascularization (total CHD events). During 8 years of follow-up between 1997-1998 and June 2007, 351 participants developed total CHD events (197 "hard" events). IL-6 (highest quartile vs. lowest: hazard ratio = 1.82, 95% confidence interval: 1.33, 2.49; P-trend < 0.001) and AAI (AAI </= 0.9 vs. AAI 1.01-1.30: hazard ratio = 1.57, 95% confidence interval: 1.14, 2.18) predicted CHD events above traditional risk factors and modestly improved global measures of predictive accuracy. CRP, TNF-alpha, and aPWV had weaker associations. IL-6 and AAI accurately reclassified 6.6% and 3.3% of participants, respectively (P's </= 0.05). Results were similar for "hard" CHD, with higher reclassification rates for AAI. IL-6 and AAI are associated with future CHD events beyond traditional risk factors and modestly improve risk prediction in older adults.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
Recent evidence indicates that B cells are required for susceptibility to infection with Leishmania major in BALB/c mice. In this study, we analyzed the role of the IL-10 produced by B cells in this process. We showed that B cells purified from the spleen of BALB/c mice produced IL-10 in response to stimulation with L. major in vitro. In vivo, early IL-10 mRNA expression is detected after L. major infection in B cells from draining lymph nodes of susceptible BALB/c, but not of resistant C57BL/6 mice. Although adoptive transfer of naive wild-type B cells prior to infection in B cell-deficient BALB/c mice restored Th2 cell development and susceptibility to infection with L. major of these otherwise resistant mice, adoptive transfer of IL-10(-/-) B cells mice did not. B cells stimulated by L. major, following in vitro or in vivo encounter, express the CD1d and CD5 molecules and the IL-10 produced by these cells downregulate IL-12 production by L. major-stimulated dendritic cells. These observations indicate that IL-10 secreting B cells are phenotypically and functionally regulatory B cells. Altogether these results demonstrate that the IL-10 produced by regulatory CD1d+ CD5+ B cells in response to L. major is critical for Th2 cell development in BALB/c mice.
Resumo:
Nonlinear regression problems can often be reduced to linearity by transforming the response variable (e.g., using the Box-Cox family of transformations). The classic estimates of the parameter defining the transformation as well as of the regression coefficients are based on the maximum likelihood criterion, assuming homoscedastic normal errors for the transformed response. These estimates are nonrobust in the presence of outliers and can be inconsistent when the errors are nonnormal or heteroscedastic. This article proposes new robust estimates that are consistent and asymptotically normal for any unimodal and homoscedastic error distribution. For this purpose, a robust version of conditional expectation is introduced for which the prediction mean squared error is replaced with an M scale. This concept is then used to develop a nonparametric criterion to estimate the transformation parameter as well as the regression coefficients. A finite sample estimate of this criterion based on a robust version of smearing is also proposed. Monte Carlo experiments show that the new estimates compare favorably with respect to the available competitors.
Resumo:
Until recently farm management made little use of accounting and agriculture has been largely excluded from the scope of accounting standards. This article examines the current use of accounting in agriculture and points theneed to establish accounting standards for agriculture. Empirical evidence shows that accounting can make a significant contribution to agricultural management and farm viability and could also be important for other agents involved in agricultural decision making. Existing literature on failureprediction models and farm viability prediction studies provide the starting point for our research, in which two dichotomous logit models were applied to subsamples of viable and unviable farms in Catalonia, Spain. The firstmodel considered only non-financial variables, while the other also considered financial ones. When accounting variables were added to the model, a significant reduction in deviance was observed.
Resumo:
Purpose: Pulmonary hypoplasia is a determinant parameter for extra-uterine life. In the last years, MRI appears as a complement to US in order to evaluate the degree of pulmonary hypoplasia in foetuses with congenital anomalies, by using different methods - fetal lung volumetry (FLV), lung-to-liver signal intensity ratio (LLSIR)-. But until now, information about the correlation between the MRI prediction and the real postnatal outcome is limited. Methods and materials: We retrospectively reviewed the fetal MRI performed at our Institution in the last 8 years and selected the cases with suspicion of fetal pulmonary hypoplasia (n = 30). The pulmonary volumetry data of these foetuses were collected and the lung-to-liver signal intensity ratio (LLSIR) measures performed. These data were compared with those obtained from a control group of 25 foetuses considered as normal at MRI. The data of the study group were also correlated with the autopsy records or the post-natal clinical information of the patients. Results: As expected, the control group showed higher FLV and LLSIR values than the problem group at all gestational ages. Higher values of FLV and LLSIR were associated with a better post-natal outcome. Sensitivity, specificity, positive and negative predictive values and accuracy for the relative LLSIR and the relative FLV showed no significant differences. Conclusion: Our data show that not only the FLV but also the relative LLSIR inform about the degree of fetal lung development. This information may help to predict the fetal outcome and to evaluate the need for neonatal intensive care.
Resumo:
Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.
Resumo:
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if thesequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor.
Resumo:
To provide a quantitative support to the handwriting evidence evaluation, a new method was developed through the computation of a likelihood ratio based on a Bayesian approach. In the present paper, the methodology is briefly described and applied to data collected within a simulated case of a threatening letter. Fourier descriptors are used to characterise the shape of loops of handwritten characters "a" of the true writer of the threatening letter, and: 1) with reference characters "a" of the true writer of the threatening letter, and then 2) with characters "a" of a writer who did not write the threatening letter. The findings support that the probabilistic methodology correctly supports either the hypothesis of authorship or the alternative hypothesis. Further developments will enable the handwriting examiner to use this methodology as a helpful assistance to assess the strength of evidence in handwriting casework.