On prediction of individual sequences


Autoria(s): Cesa Bianchi, Nicolo; Lugosi, Gábor
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

Sequential randomized prediction of an arbitrary binary sequence isinvestigated. No assumption is made on the mechanism of generating the bit sequence. The goal of the predictor is to minimize its relative loss, i.e., to make (almost) as few mistakes as the best ``expert'' in a fixed, possibly infinite, set of experts. We point out a surprising connection between this prediction problem and empirical process theory. First, in the special case of static (memoryless) experts, we completely characterize the minimax relative loss in terms of the maximum of an associated Rademacher process. Then we show general upper and lower bounds on the minimaxrelative loss in terms of the geometry of the class of experts. As main examples, we determine the exact order of magnitude of the minimax relative loss for the class of autoregressive linear predictors and for the class of Markov experts.

Identificador

http://hdl.handle.net/10230/1228

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods #universal prediction #prediction with experts #absolute loss #empirical processes #covering numbers #finite-state machines
Tipo

info:eu-repo/semantics/workingPaper