972 resultados para SILICON HETEROJUNCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report studies of the photoluminescence emission in samples based on Si/SiOx films deposited by the Pulsed Electron Beam Ablation (PEBA) technique. The samples were prepared at room temperature using targets with different Si/SiO2 concentrations. The samples were characterized using X-ray Absorption Edge Spectroscopy (XANES) at the Si-K edge, Raman spectroscopy, Photoluminescence (PL) and X-ray Photoelectron Spectroscopy (XPS). The concentration of a-Si and nc-Si in the film was dependent on the silicon concentration in the target. It was also observed that the PL is strongly dependent on the structural amorphous/crystalline arrangement. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work examines the effect of copper nanoparticles (Cu NPs) on the photocurrent efficiency of silicon photovoltaic (Si PV) devices. An optimized synthesis of stable Cu NPs is reported together with a procedure for their immobilization on the Si PV surface. A comprehensive analysis of the photocurrent and power dependence of the Cu NPs surface coverage and size is presented. A decrease in photoconversion was observed for wavelengths shorter than similar to 500 nm, due to the Cu interband absorption. In the low surface coverage limit, where the level of aggregation was found to be low, the surface plasmon resonance absorption dominates leading to a modest effect on the photocurrent response. As the number of aggregates increased with the surface coverage, the photocurrent efficiency also increased, and a maximum enhancement power conversion of 16% was found for a 54 +/- 6 NPs per mu m(2) PV cell. This enhancement was attributed to SPR light scattering and trapping into the Si PV device. Higher surface coverage yielded numerous aggregates which acted as a bulk coating and caused a decrease in both photocurrent and power measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to show the dependence relationship between the crystallographic orientations upon brittle-to-ductile transition during diamond turning of monocrystalline silicon. Cutting tests were performed using a -5 degrees rake angle round nose diamond tool at different machining scales. At the micrometre level, the feedrate was kept constant at 2.5 micrometres per revolution (mu m/r), and the depth of cut was varied from 1 to 5 mu m. At the submicrometre level, the depth of cut was kept constant at 500 nm and the feedrate varied from 5 to 10 mu m/r. At the micrometre level, the uncut shoulder generated with an interrupted cutting test procedure provided a quantitative measurement of the ductile-to-brittle transition. Results show that the critical chip thickness in silicon for ductile material removal reaches a maximum of 285 nm in the [100] direction and a minimum of 115 nm in the [110] direction, when the depth of cut was 5 mu m. It was found that when a submicrometre depth of cut was applied, microcracks were revealed in the [110] direction, which is the softer direction in silicon. Micro Raman spectroscopy was used to estimate surface residual stress after machining. Compressive residual stress in the range 142 MPa and smooth damage free surface finish was probed in the [100] direction for a depth of cut of 5 mu m, whereas residual stresses in the range 350 MPa and brittle damage was probed in the [110] direction for a depth of cut of 500 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Silicon location through backscattered electron imaging and X-ray microanalysis in leaves of Cyperus ligularis L. and Rhynchospora aberrans C. B. Clarke (Cyperaceae)). The Cyperaceae show the ability to incorporate silicon by depositing colloidal silica, which is recorded by the occurrence of projections in the form of cones, in inner tangential walls of some epidermal cells or "silica cells". Leaves of C. ligularis and R. aberrans were analyzed through the technique of electron backscatter. Cyperus ligularis accumulates silica, in addition to "silica cells", in some stomata, trichomes and the cell walls that surround the cavities of the aerenchyma. The silica in the latter occurs in various forms; however, the cells located near the vascular bundles have conical projections, similar to those of the epidermis. Rhynchospora aberrans presents "silica cells" whose projections have tapered "satellites". In this species, silica also occurs in stomata and certain epidermal cells adjacent to them. It appears that the silicon deposition occurs in combination with the wall (with no apparent structural changes), and structures of secretion, or projections of the wall. These structural changes in the species, and location, are probably related to functional and environmental factors, especially the soil, in addition to relation with taxonomic groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the potential application of biodegradable nanoparticles containing a photosensitizer in photodynamic therapy. The poly (D,L lactic-co-glycolic acid) nanoparticles were studied by steady-state techniques, time-resolved fluorescence, and laser flash photolysis. The external morphology of the nanoparticles was established by scanning electron microscopy, and the biological activity was evaluated by in vitro cell culture by 3-(4,5 dimethylthiazol-2,5 biphenyl) tetrazolium bromide assay. The particles were spherical in shape exhibiting a 435 nm diameter with a low tendency to aggregate. The loading efficiency was 77%. The phthalocyanine-loaded-nanoparticles maintained their photophysical behavior after encapsulation. The cellular viability was determined, obtaining 70% of cellular death. All the performed physical-chemical, photophysical, and photobiological measurements indicated that the phthalocyanine-loaded-nanoparticles are a promising drug delivery system for photodynamic therapy and photoprocesses. (C) 2012 Laser Institute of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of benzenethiol and diphenyl disulfide with the silicon (001) surface. A direct comparison of different adsorption structures with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) allow us to identify that benzenethiol and diphenyl disulfide dissociatively adsorb on the silicon surface. In addition, theoretically obtained data suggests that the C6H5SH:Si(001) presents a higher Schottky barrier height contact when compared to other similar aromatic molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades the development of bone substitutes characterized by a superior biomimetism has become of particular interest, owing to the increasing economic and societal impact of the bone diseases. In the present work of research the development of bone substitutes characterized by improved biomimetism, has been faced in a chemical, structural and morphological perspective. From a chemical point of view, it has been developed the synthesis of hydroxyapatite powders, exhibiting multiple ionic substitutions in both cationic and anionic sites, so to simulate the chemical composition of the natural bone. Particular emphasis has been given to the effect of silicon on the chemical-physical and solubility properties of the obtained hydroxyapatites. From a structural point of view, it has been developed the synthesis of ceramic composite materials, based on hydroxyapatite and calcium silicates, employed both as a reinforcing phase, to raise the mechanical strength of the composite compared to hydroxyapatite, and as a bioactive phase, able to increase the bioactivity properties of the whole ceramic. Finally the unique morphological features of the bone were mimicked by taking inspiration by Nature, so that native wood structures were treated in chemical and thermal way to obtain hydroxyapatite porous materials characterized by the same morphology as the native wood. The results obtained in the present work were positive in all the three different areas of investigation, so to cover the three different aspects of biomimetism, chemical, structural and morphological. Anyway, only at the convergence of the three different fields it is possible to find out the best solutions to develop the ideal bone-like scaffold. Thus, the future activity should be devoted to solve the problems at the borderline between the different research lines, which hamper this convergence and in consequence, the achievement of a bone scaffold able to mimic the various aspects exhibited by the bone tissue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis analyzes theoretically and computationally the phenomenon of partial ionization of the substitutional dopants in Silicon Carbide at thermal equilibrium. It is based on the solution of the charge neutrality equation and takes into account the following phenomena: several energy levels in the bandgap; Fermi-Dirac statistics for free carriers; screening effects on the dopant ionization energies; the formation of impurity bands. A self-consistent model and a corresponding simulation software have been realized. A preliminary comparison of our calculations with existing experimental results is carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, block copolymers (BCPs) have attracted increasing scientific and technological interest because of their inherent capability to spontaneously self-assemble into ordered arrays of nanostructures. The importance of nanostructures in a number of applications has fostered the need for well-defined, complex macromolecular architectures. In this thesis, the influence of macromolecular architecture on the bulk morphologies of novel linear-hyperbranched and linear brush-like diblock copolymer structure is investigated. An innovative, generally applicable strategy for the preparation of these defined diblock copolymers, consisting of linear polystyrene and branched polycarbosilane blocks, is demonstrated. Furthermore, complete characterization and solid-state morphological studies are provided. Finally, the concept is extended to linear-hyperbrached and linear brush-like polyalkoxysilanes. A shift of the classical phase boundaries to higher PS weight fractions as well as the appearance of new morphologies confirms the dramatic effect that polymer topology has on the morphology of BCPs.