971 resultados para Pyramidal Tracts
Resumo:
Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm−1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm−1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm−1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm−1 together with bands at 689, 697, 736, and 602 cm−1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm−1 with a distinct shoulder at 3568 cm−1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm−1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.
Resumo:
Background Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. Results Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations. Conclusions The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen. Keywords: Chlamydia pecorum; Single nucleotide polymorphism; Pseudogene; Cytotoxin
Resumo:
A hippocampal-CA3 memory model was constructed with PGENESIS, a recently developed version of GENESIS that allows for distributed processing of a neural network simulation. A number of neural models of the human memory system have identified the CA3 region of the hippocampus as storing the declarative memory trace. However, computational models designed to assess the viability of the putative mechanisms of storage and retrieval have generally been too abstract to allow comparison with empirical data. Recent experimental evidence has shown that selective knock-out of NMDA receptors in the CA1 of mice leads to reduced stability of firing specificity in place cells. Here a similar reduction of stability of input specificity is demonstrated in a biologically plausible neural network model of the CA3 region, under conditions of Hebbian synaptic plasticity versus an absence of plasticity. The CA3 region is also commonly associated with seizure activity. Further simulations of the same model tested the response to continuously repeating versus randomized nonrepeating input patterns. Each paradigm delivered input of equal intensity and duration. Non-repeating input patterns elicited a greater pyramidal cell spike count. This suggests that repetitive versus non-repeating neocortical inpus has a quantitatively different effect on the hippocampus. This may be relevant to the production of independent epileptogenic zones and the process of encoding new memories.
Resumo:
Auditory fear conditioning is dependent on auditory signaling from the medial geniculate (MGm) and the auditory cortex (TE3) to principal neurons of the lateral amygdala (LA). Local circuit GABAergic interneurons are known to inhibit LA principal neurons via fast and slow IPSP's. Stimulation of MGm and TE3 produces excitatory post-synaptic potentials in both LA principal and interneurons, followed by inhibitory post-synaptic potentials. Manipulations of D1 receptors in the lateral and basal amygdala modulate the retrieval of learned association between an auditory CS and foot shock. Here we examined the effects of D1 agonists on GABAergic IPSP's evoked by stimulation of MGm and TE3 afferents in vitro. Whole cell patch recordings were made from principal neurons of the LA, at room temperature, in coronal brain slices using standard methods. Stimulating electrodes were placed on the fiber tracts medial to the LA and at the external capsule/layer VI border dorsal to the LA to activate (0.1-0.2mA) MGm and TE3 afferents respectively. Neurons were held at -55.0 mV by positive current injection to measure the amplitude of the fast IPSP. Changes in input resistance and membrane potential were measured in the absence of current injection. Stimulation of MGm or TE3 afferents produced EPSP's in the majority of principal neurons and in some an EPSP/IPSP sequence. Stimulation of MGm afferents produced IPSP's with amplitudes of -2.30 ± 0.53 mV and stimulation of TE3 afferents produced IPSP's with amplitudes of -1.98 ± 1.26 mV. Bath application of 20μM SKF38393 increased IPSP amplitudes to -5.94 ± 1.62 mV (MGm, n=3) and-5.46 ± 0.31 mV (TE3, n=3). Maximal effect occurred <10mins. A small increase in resting membrane potential and decrease in input resistance were observed. These data suggest that DA modulates both the auditory thalamic and auditory cortical inputs to the LA fear conditioning circuit via local GABAergic circuits. Supported by NIMH Grants 00956, 46516, and 58911.
Resumo:
The Field and Service Robotics (FSR) conference is a single track conference with a specific focus on field and service applications of robotics technology. The goal of FSR is to report and encourage the development of field and service robotics. These are non-factory robots, typically mobile, that must operate in complex and dynamic environments. Typical field robotics applications include mining, agriculture, building and construction, forestry, cargo handling and so on. Field robots may operate on the ground (of Earth or planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans, importantly the elderly and sick, to help them with their lives. The first FSR conference was held in Canberra, Australia, in 1997. Since then the meeting has been held every 2 years in Asia, America, Europe and Australia. It has been held in Canberra, Australia (1997), Pittsburgh, USA (1999), Helsinki, Finland (2001), Mount Fuji, Japan (2003), Port Douglas, Australia (2005), Chamonix, France (2007), Cambridge, USA (2009), Sendai, Japan (2012) and most recently in Brisbane, Australia (2013). This year we had 54 submissions of which 36 were selected for oral presentation. The organisers would like to thank the international committee for their invaluable contribution in the review process ensuring the overall quality of contributions. The organising committee would also like to thank Ben Upcroft, Felipe Gonzalez and Aaron McFadyen for helping with the organisation and proceedings. and proceedings. The conference was sponsored by the Australian Robotics and Automation Association (ARAA), CSIRO, Queensland University of Technology (QUT), Defence Science and Technology Organisation Australia (DSTO) and the Rio Tinto Centre for Mine Automation, University of Sydney.
Resumo:
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.
Resumo:
Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
Brain connectivity analyses are increasingly popular for investigating organization. Many connectivity measures including path lengths are generally defined as the number of nodes traversed to connect a node in a graph to the others. Despite its name, path length is purely topological, and does not take into account the physical length of the connections. The distance of the trajectory may also be highly relevant, but is typically overlooked in connectivity analyses. Here we combined genotyping, anatomical MRI and HARDI to understand how our genes influence the cortical connections, using whole-brain tractography. We defined a new measure, based on Dijkstra's algorithm, to compute path lengths for tracts connecting pairs of cortical regions. We compiled these measures into matrices where elements represent the physical distance traveled along tracts. We then analyzed a large cohort of healthy twins and show that our path length measure is reliable, heritable, and influenced even in young adults by the Alzheimer's risk gene, CLU.
Resumo:
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Resumo:
To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion - a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a pointwise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins.
Resumo:
Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.
Resumo:
Diffusion weighted magnetic resonance (MR) imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of 6 directions, second-order tensors can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve crossing fiber tracts. Recently, a number of high-angular resolution schemes with greater than 6 gradient directions have been employed to address this issue. In this paper, we introduce the Tensor Distribution Function (TDF), a probability function defined on the space of symmetric positive definite matrices. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the diffusion orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function.