950 resultados para Optimal Linear Codes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for approximate credal network updating is presented. The problem in its general formulation is a multilinear optimization task, which can be linearized by an appropriate rule for fixing all the local models apart from those of a single variable. This simple idea can be iterated and quickly leads to very accurate inferences. The approach can also be specialized to classification with credal networks based on the maximality criterion. A complexity analysis for both the problem and the algorithm is reported together with numerical experiments, which confirm the good performance of the method. While the inner approximation produced by the algorithm gives rise to a classifier which might return a subset of the optimal class set, preliminary empirical results suggest that the accuracy of the optimal class set is seldom affected by the approximate probabilities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O tema principal desta tese é o problema de cancelamento de interferência para sistemas multi-utilizador, com antenas distribuídas. Como tal, ao iniciar, uma visão geral das principais propriedades de um sistema de antenas distribuídas é apresentada. Esta descrição inclui o estudo analítico do impacto da ligação, dos utilizadores do sistema, a mais antenas distribuídas. Durante essa análise é demonstrado que a propriedade mais importante do sistema para obtenção do ganho máximo, através da ligação de mais antenas de transmissão, é a simetria espacial e que os utilizadores nas fronteiras das células são os mais bene ciados. Tais resultados são comprovados através de simulação. O problema de cancelamento de interferência multi-utilizador é considerado tanto para o caso unidimensional (i.e. sem codi cação) como para o multidimensional (i.e. com codi cação). Para o caso unidimensional um algoritmo de pré-codi cação não-linear é proposto e avaliado, tendo como objectivo a minimização da taxa de erro de bit. Tanto o caso de portadora única como o de multipla-portadora são abordados, bem como o cenário de antenas colocadas e distribuidas. É demonstrado que o esquema proposto pode ser visto como uma extensão do bem conhecido esquema de zeros forçados, cuja desempenho é provado ser um limite inferior para o esquema generalizado. O algoritmo é avaliado, para diferentes cenários, através de simulação, a qual indica desempenho perto do óptimo, com baixa complexidade. Para o caso multi-dimensional um esquema para efectuar "dirty paper coding" binário, tendo como base códigos de dupla camada é proposto. No desenvolvimento deste esquema, a compressão com perdas de informação, é considerada como um subproblema. Resultados de simulação indicam transmissão dedigna proxima do limite de Shannon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A relação entre a epidemiologia, a modelação matemática e as ferramentas computacionais permite construir e testar teorias sobre o desenvolvimento e combate de uma doença. Esta tese tem como motivação o estudo de modelos epidemiológicos aplicados a doenças infeciosas numa perspetiva de Controlo Ótimo, dando particular relevância ao Dengue. Sendo uma doença tropical e subtropical transmitida por mosquitos, afecta cerca de 100 milhões de pessoas por ano, e é considerada pela Organização Mundial de Saúde como uma grande preocupação para a saúde pública. Os modelos matemáticos desenvolvidos e testados neste trabalho, baseiam-se em equações diferenciais ordinárias que descrevem a dinâmica subjacente à doença nomeadamente a interação entre humanos e mosquitos. É feito um estudo analítico dos mesmos relativamente aos pontos de equilíbrio, sua estabilidade e número básico de reprodução. A propagação do Dengue pode ser atenuada através de medidas de controlo do vetor transmissor, tais como o uso de inseticidas específicos e campanhas educacionais. Como o desenvolvimento de uma potencial vacina tem sido uma aposta mundial recente, são propostos modelos baseados na simulação de um hipotético processo de vacinação numa população. Tendo por base a teoria de Controlo Ótimo, são analisadas as estratégias ótimas para o uso destes controlos e respetivas repercussões na redução/erradicação da doença aquando de um surto na população, considerando uma abordagem bioeconómica. Os problemas formulados são resolvidos numericamente usando métodos diretos e indiretos. Os primeiros discretizam o problema reformulando-o num problema de optimização não linear. Os métodos indiretos usam o Princípio do Máximo de Pontryagin como condição necessária para encontrar a curva ótima para o respetivo controlo. Nestas duas estratégias utilizam-se vários pacotes de software numérico. Ao longo deste trabalho, houve sempre um compromisso entre o realismo dos modelos epidemiológicos e a sua tratabilidade em termos matemáticos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the application of optimal alarm systems to non linear time series models. The most common classes of models in the analysis of real-valued and integer-valued time series are described. The construction of optimal alarm systems is covered and its applications explored. Considering models with conditional heteroscedasticity, particular attention is given to the Fractionally Integrated Asymmetric Power ARCH, FIAPARCH(p; d; q) model and an optimal alarm system is implemented, following both classical and Bayesian methodologies. Taking into consideration the particular characteristics of the APARCH(p; q) representation for financial time series, the introduction of a possible counterpart for modelling time series of counts is proposed: the INteger-valued Asymmetric Power ARCH, INAPARCH(p; q). The probabilistic properties of the INAPARCH(1; 1) model are comprehensively studied, the conditional maximum likelihood (ML) estimation method is applied and the asymptotic properties of the conditional ML estimator are obtained. The final part of the work consists on the implementation of an optimal alarm system to the INAPARCH(1; 1) model. An application is presented to real data series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino da Matemática, Universidade de Lisboa, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.