360 resultados para Nanomechanische Cantilever


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. The null hypothesis was that mechanical testing systems used to determine polymerization stress (sigma(pol)) would rank a series of composites similarly. Methods. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. sigma(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. Results. For the experimental composites, sigma(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, sigma(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between sigma(pol) and VS or E. Significance. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Primary and secondary stabilities of immediately loaded mandibular implants restored with fixed prostheses (FP) using rigid or semirigid splinting systems were clinically and radiographically evaluated. Methods: Fifteen edentulous patients were rehabilitated using hybrid FP; each had 5 implants placed between the mental foramens. Two groups were randomly divided: group 1-FP with the conventional rigid bar splinting the implants and group 2-semi-rigid cantilever extension system with titanium bars placed in the 2 distal abutment cylinders. Primary stability was evaluated using resonance frequency analysis after installation of the implant abutments. The measurements were made at 3 times: T0, at baseline; T1, 4 months after implant placement; and T2, 8 months after implant placement. Presence of mobility and inflammation in the implant surrounding regions were checked. Stability data were submitted to statistical analysis for comparison between groups (P, 0.05). Results: Implant survival rate for the implants was of 100% in both groups. No significant differences in the mean implant stability quotient values were found for both groups from baseline and after the 8-month follow-up. Conclusion: The immediate loading of the implants was satisfactory, and both splinting conditions (rigid and semi-rigid) can be successfully used for the restoration of edentulous mandibles. (Implant Dent 2012;21:486-490)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of piezoelectric materials for the development of electromechanical devices for the harvesting or scavenging of ambient vibrations has been extensively studied over the last decade. The energy conversion from mechanical (vibratory) to electrical energy is provided by the electromechanical coupling between mechanical strains/stresses and electric charges/voltages in the piezoelectric material. The majority of the studies found in the open literature present a tip-mass cantilever piezoelectric device tuned on the operating frequency. Although recent results show that these devices can be quite effective for harvesting small amounts of electrical energy, little has been published on the robustness of these devices or on the effect of parametric uncertainties on the energy harvested. This work focuses on a cantilever plate with bonded piezoelectric patches and a tip-mass serving as an energy harvesting device. The rectifier and storage electric circuit was replaced by a resistive circuit (R). In addition, an alternative to improve the harvesting performance by adding an inductance in series to the harvesting circuit, thus leading to a resonant circuit (RL), is considered. A coupled finite element model leading to mechanical (displacements) and electrical (charges at electrodes) degrees of freedom is considered. An analysis of the effect of parametric uncertainties of the device on the electric output is performed. Piezoelectric and dielectric constants of the piezoelectric active layers and electric circuit equivalent inductance are considered as stochastic parameters. Mean and confidence intervals of the electric output are evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programa de doctorado: Ingeniería de Telecomunicación Avanzada

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the work is: define and calculate a factor of collapse related to traditional method to design sheet pile walls. Furthermore, we tried to find the parameters that most influence a finite element model representative of this problem. The text is structured in this way: from chapter 1 to 5, we analyzed a series of arguments which are usefull to understanding the problem, while the considerations mainly related to the purpose of the text are reported in the chapters from 6 to 10. In the first part of the document the following arguments are shown: what is a sheet pile wall, what are the codes to be followed for the design of these structures and what they say, how can be formulated a mathematical model of the soil, some fundamentals of finite element analysis, and finally, what are the traditional methods that support the design of sheet pile walls. In the chapter 6 we performed a parametric analysis, giving an answer to the second part of the purpose of the work. Comparing the results from a laboratory test for a cantilever sheet pile wall in a sandy soil, with those provided by a finite element model of the same problem, we concluded that:in modelling a sandy soil we should pay attention to the value of cohesion that we insert in the model (some programs, like Abaqus, don’t accept a null value for this parameter), friction angle and elastic modulus of the soil, they influence significantly the behavior of the system (structure-soil), others parameters, like the dilatancy angle or the Poisson’s ratio, they don’t seem influence it. The logical path that we followed in the second part of the text is reported here. We analyzed two different structures, the first is able to support an excavation of 4 m, while the second an excavation of 7 m. Both structures are first designed by using the traditional method, then these structures are implemented in a finite element program (Abaqus), and they are pushed to collapse by decreasing the friction angle of the soil. The factor of collapse is the ratio between tangents of the initial friction angle and of the friction angle at collapse. At the end, we performed a more detailed analysis of the first structure, observing that, the value of the factor of collapse is influenced by a wide range of parameters including: the value of the coefficients assumed in the traditional method and by the relative stiffness of the structure-soil system. In the majority of cases, we found that the value of the factor of collapse is between and 1.25 and 2. With some considerations, reported in the text, we can compare the values so far found, with the value of the safety factor proposed by the code (linked to the friction angle of the soil).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Untersuchungen zur Aufklärung des Versagens thermisch verschweißter Polymergrenzflächen (hier: Polymethylmethacrylat) durchgeführt. Solch ein Wissen kommt in der Praxis bei sogenannten Sollbruchstellen zum Einsatz. Dabei muss die Grenzschicht bis zu einer bestimmten Belastungsintensität stabil bleiben bei höherer Belastung jedoch brechen. Zudem ist eine stabile Risspropagation entlang der Grenzschicht wichtig.Neben der Bruchstabilitätsbestimmung mit Hilfe des Double Cantilever Beam Tests wurden die beim Versagen der Grenzschicht entstandenen Defekte untersucht. Die Analyse der Bruchfläche erfolgte mit Mikroskopie und Höhenprofilometrie. Defekte im Volumen wurden durch Scanning-Ultra Small Angle X-ray Scattering und Scanning Microfokus-Small Angle X-ray Scattering untersucht.Im Modellsystem können Sollbruchstellen bis zu einer Belastungsintensität von maximal 280J/m² durch die Verschweißungsdauer eingestellt werden. Die Untersuchung der Bruchflächen lieferte ein kombiniertes Modell aus Ausheil- und Interdiffusionsprozess. Ferner folgt aus den Streuuntersuchungen, dass beim Modellsystem keine hochgeordneten Defektstrukturen vorliegen. Die entstandenen Strukturen folgen einem Modell diffuser Defektgrenzflächen. Über die gemessene Diffusivität kann zudem auf die Energiedissipation im Bereich um das Rissende geschlossen werden. Sie ist im unmittelbaren Rissbereich am Höchsten und nimmt mit Entfernung davon ab. Dabei haben die Defektbereiche eine Größe bis zu 650µm. Die Richtung der von außen angelegten Belastung spielt bei der räumlichen Orientierung der Defekte keine Rolle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, pterosaur skull constructions were analysed using a combined approach of finite element analysis (FEA), static investigations as well as applying classical beam theory and lever mechanics. The study concentrates on the operating regime „bite“, where loads are distributed via the dentition or a keratinous rhamphotheca into the skull during jaw occlusion. As a first step, pterosaur tooth constructions were analysed. The different morphologies of the tooth construction determine specific operational ranges, in which the teeth perform best (= greatest resistance against failure). The incomplete enamel-covering of the pterosaur tooth constructions thereby leads to a reduction of strain and stress and to a greater lateral elasticity than for a complete enamel cover. This permits the development of high and lateral compressed tooth constructions. Further stress-absorption occurs in the periodontal membrane, although its mechanical properties can not be clarified unambiguously. A three-dimensionally preserved skull of Anhanguera was chosen as a case-study for the investigation of the skull constructions. CT-scans were made to get information about the internal architecture, supplemented by thin-sections of a rostrum of a second Anhanguera specimen. These showed that the rostrum can be approximated as a double-walled triangular tube with a large central vacuity and an average wall-thickness of the bony layers of about 1 mm. On base of the CT-scans, a stereolithography of the skull of Anhanguera was made on which the jaw adductor and abductor muscles were modelled, permitting to determine muscular forces. The values were used for the lever mechanics, cantilever and space frame analysis. These studies and the FEA show, that the jaw reaction forces are critical for the stability of the skull construction. The large jugal area ventral to the orbita and the inclined occipital region act as buttresses against these loads. In contrast to the orbitotemporal region which is subject to varying loading conditions, the pattern in the rostrum is less complex. Here, mainly bending in dorsal direction and torsion occur. The hollow rostrum leads to a reduction of weight of the skull and to a high bending and torsional resistance. Similar to the Anhanguera skull construction, the skulls of those pterosaur taxa were analysed, from which enough skull material is know to permit a reliable reconstruction. Furthermore, FEA were made from five selected taxa. The comparison of the biomechanical behaviour of the different skull constructions results in major transformational processes: elongation of rostra, inclination of the occipital region, variation of tooth morphology, reduction of the dentition and replacement of teeth by a keratinous hook or rhamphotheca, fusion of naris and antorbital fenestra, and the development of bony and soft-tissue crests. These processes are discussed for their biomechanical effects during bite. Certain optional operational ranges for feeding are assigned to the different skull constructions and previous hypotheses (e.g. skimming) are verified. Using the principle of economisation, these processes help to establish irreversible transformations and to define possible evolutionary pathways. The resulting constructional levels and the structural variations within these levels are interpreted in light of a greater feeding efficiency and reduction of bony mass combined with an increased stability against the various loads. The biomechanical conclusive pathways are used for comparison and verification of recent hypothesis of the phylogenetic systematics of pterosaurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit ist die Synthese von Polymerbürsten auf Silizium durch Aufbringen der Reaktionslösung mit einem Pipettiersystem. Dies ist für die Beschichtung von Microcantilever Sensoren interessant, um spezifische Fühler mit funktionellen Polymerschichten, die auf chemische oder physikalische Einflüsse reagieren, zu bauen. Bisherige Synthesemethoden werden in Lösung durchgeführt. Atom Transfer Radical Polymerization ist etabliert, um definierte Schichten von Polymerbürsten herzustellen. Die Kombination mit einer “Spot Printing”-Technik kann eine Alternative sein, um einzelne Cantilever mit einer Breite von 90 μm und einer Länge von 750 μm zu beschichten. Dafür wurde eine Chemie getestet, die mit dem Pipettiersystem Nano-Plotter der Firma Gesim umsetzbar ist. Aus einer Mischung aus Wasser und DMF wurden Poly(N-Isopropylacrylamid)-Bürsten auf Silizium mit Schichtdicken bis zu 40 nm hergestellt. Es war nötig den Nano-Plotter anzupassen, damit zum einen auf die Microcantilever Sensoren pipettiert werden kann und zum andern die Nanoliter großen Tropfen über den Reaktionszeitraum stabil sind. Auf diese Weise konnten Linien mit einer Schichtdicke von ca. 2 nm auf Siliziumwafer hergestellt werden. Die “Spot-Printing” Methode ist daher eine gute Ergänzung zur herkömmlichen Synthese.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to apply the techniques of the atomic force microscope (AFM) to biological samples, namely lipid-based systems. To this end several systems with biological relevance based on self-assembly, such as a solid-supported membrane (SSM) based sensor for transport proteins, a bilayer of the natural lipid extract from an archaebacterium, and synaptic vesicles, were investigated by the AFM. For the characterization of transport proteins with SSM-sensors proteoliposomes are adsorbed that contain the analyte (transport protein). However the forces governing bilayer-bilayer interactions in solution should be repulsive under physiological conditions. I investigated the nature of the interaction forces with AFM force spectroscopy by mimicking the adsorbing proteoliposome with a cantilever tip, which was functionalized with charged alkane thiols. The nature of the interaction is indeed repulsive, but the lipid layers assemble in stacks on the SSM, which expose their unfavourable edges to the medium. I propose a model by which the proteoliposomes interact with these edges and fuse with the bilayer stacks, so forming a uniform layer on the SSM. Furthermore I characterized freestanding bilayers from a synthetic phospholipid with a phase transition at 41°C and from a natural lipid extract of the archaebacterium Methanococcus jannaschii. The synthetic lipid is in the gel-phase at room temperature and changes to the fluid phase when heated to 50°C. The bilayer of the lipid extract shows no phase transition when heated from room temperature to the growth temperature (~ 50°C) of the archeon. Synaptic vesicles are the containers of neurotransmitter in nerve cells and the synapsins are a family of extrinsic membrane proteins, that are associated with them, and believed to control the synaptic vesicle cycle. I used AFM imaging and force spectroscopy together with dynamic light scattering to investigate the influence of synapsin I on synaptic vesicles. To this end I used native, untreated synaptic vesicles and compared them to synapsin-depleted synaptic vesicles. Synapsin-depleted vesicles were larger in size and showed a higher tendency to aggregate compared to native vesicles, although their mechanical properties were alike. I also measured the aggregation kinetics of synaptic vesicles induced by synapsin I and found that the addition of synapsin I promotes a rapid aggregation of synaptic vesicles. The data indicate that synapsin I affects the stability and the aggregation state of synaptic vesicles, and confirm the physiological role of synapsins in the assembly and regulation of synaptic vesicle pools within nerve cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to investigate the evaporation dynamics of water microdrops deposited on atomic force microscope cantilevers, which were employed as sensitive stress, mass and temperature sensors with high time resolution. The technique has some advantages with respect to video-microscope imaging and ultra-precision weighting with electronic microbalances or quartz crystal microbalances, since it allows to measure more drop parameters simultaneously for smaller drop sizes. On hydrophobic surfaces a single measurement with a silicon cantilever provides data for the drop mass, contact angle and radius until very close to complete evaporation. On hydrophilic surfaces, it is as well possible to measure drop mass and inclination of the cantilever. The technique further allows to detect differences between water microdrops evaporating from clean hydrophilic and hydrophobic surfaces. On hydrophilic surfaces the cantilever inclination is negative at the end of the evaporation process. Negative inclination mostly occurs when drops are pinned. This effect can not be detected with any of the other well-established methods. The evidence arises that on the hydrophilic surface a thin water film forms, while this is not the case for the hydrophobic surface. Metal coated cantilevers can be used as thermometers, and allow to precisely measure the temperature of an evaporating microdrop. This can be relevant for further applications of cantilevers as calorimetric sensors for chemical reactions taking place in drops on their surface. The applicability of Young’s equation was verified for microdrops. It was shown that Young’s equation can not be applied to microscopic drops due to their fast evaporation. A study on evaporation of microdrops in saturated vapor atmosphere was performed to estimate evaporation times and compare them with a theory developed, which relates the initial drop volume with the overall evaporation time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden experimentelle Untersuchungen zu gepfropften Polymerfilmen durchgeführt. Dabei wurden endgepfropfte poly-methyl-methacrylate (PMMA) Bürsten hergestellt durch „grafting from“ Methoden und polystyrol (PS)/ poly-vinyl-methyl-ether (PVME) Polymerfilme gepfropft auf UV sensitiven Oberflächen untersucht. Zur Strukturuntersuchung wurden die hergestellten Systeme wurden mit Rasterkraftmikroskopie (engl.: Surface Probe Microscopy, SPM), Röntgen - und Neutronenreflektivitätsmessungen, sowie mit Röntgenstreuung unter streifenden Einfall (engl.: Grazing Incidence Small Angle X-Ray Scattering, GISAXS) untersucht. rnEs wurde gezeigt, dass ein aus der Transmissionsstreuung bekanntes Model auch für auch für die GISAXS Analyse polydisperser Polymerdomänen und Kolloidsysteme verwendet werden kann. Der maximale Fehler durch die gemachten Näherungen wurde auf < 20% abgeschätzt.rnErgebnisse aus der Strukturanalyse wurden mit mechanischen Filmeigenschaften verknüpft. Dazu wurden mechanische Spannungsexperimente durchgeführt. Hierzu wurden die zu untersuchenden Filme selektiv auf einzelne Mikro-Federbalken-Sensoren (engl.: Micro Cantilever Sensor, MCS) der MCS Arrays aufgebracht. Dies wurde durch Maskierungstechniken und Mikro-Kontaktdrucken bewerkstelligt. rnPhasenübergansexperimente der gepfropften PS/PVME Filme haben gezeigt, dass die Möglichkeit einer Polymer/Polymer Phasenseparation stark von Propfpunktdichte der gebundenen Polymerketten mit der Oberfläche abhängt. PS/PVME Filmsysteme mit hohen Pfropfpunktdichten zeigten keinen Phasenübergang. Bei niedrig gepfropften Filmsystemen waren hingegen Polymer/Polymer Phasenseparationen zu beobachten. Es wurde geschlussfolgert, dass die gepfropften Polymersysteme einen hinreichenden Grad an entropischen Freiheitsgraden benötigen um eine Phasenseparation zu zeigen. Mechanische Spannungsexperimente haben dabei das Verstehen der Phasenseparationsmechanismen möglich gemacht.rnAus Quellexperimenten dichtgepfropfter PMMA Bürsten, wurden Lösungsmittel-Polymer Wechselwirkungsparameter (-Parameter) bestimmt. Dabei wurde festgestellt, dass sich die erhaltenen Parameter aufgrund von Filmbenetzung und entropischen Effekten maßgeblich von den errechneten Bulkwerten unterscheiden. Weiterhin wurden nicht reversible Kettenverschlaufungseffekt beobachtet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work polymer brushes on both flat and curved substrates were prepared by grafting from and grafting to techniques. The brushes on flat substrates were patterned on the µm-scale with the use of an inkjet printer. Thus it was demonstrated that chemistry with an inkjet printer is feasible. The inkjet printer was used to deposit microdroplets of acid. The saponification of surface-immobilized ATRP initiators containing an ester bond occurred in these microdroplets. The changes in the monolayer of ester molecules due to saponification were amplified by SI-ATRP. It was possible to correlate the polymer brush thickness to effectiveness of saponification. The use of an inkjet printer allowed for simultaneously screening of parameters such as type of acid, concentration of acid, and contact time between acid and surface. A dip-coater was utilized in order to test the saponification independent of droplet evaporation. The advantage of this developed process is its versatility. It can be applied to all surface-immobilized initiators containing ester bonds. The technique has additionally been used to selectively defunctionalize the initiator molecules covering a microcantilever on one side of a cantilever. An asymmetric coating of the cantilever with polymer brushes was thus generated. An asymmetric coating allows the use of a microcantilever for sensing applications. The preparation of nanocomposites comprised of polyorganosiloxane microgel particles functionalized with poly(ethyl methacrylate) (PEMA) brushes and linear, but entangled, PEMA chains is described in the second major part of this thesis. Measurement of the interparticle distance was performed using scanning probe microscopy and grazing incidence small angle X-ray scattering. The matrix molecular weight at which the nanocomposite showed microphase separation was related to abrupt changes in inter-particle distance. Microphase separation occurred once the matrix molecular exceeded the molecular weight of the brushes. The trigger for the microphase separation was a contraction of the polymer brushes, as the measurements of inter-particle distance have revealed. The brushes became impenetrable for the matrix chains upon contraction and thus behaved as hard spheres. The contraction led to a loss of anchoring between particles and matrix, as shown by nanowear tests using an atomic force microscope. Polyorganosiloxane microgel particles were functionalized with 13C enriched poly(ethyl methacrylate) brushes. New synthetic pathways were developed in order to enrich not the entire brush with 13C, but only exclusively selected regions. 13C chemical shift anisotropy, an advanced NMR technique, can thus be used in order to gather information about the extended conformations in the 13C enriched regions of the PEMA chains immobilized on the µ-gel-g-PEMA particles. The third part of this thesis deals with the grafting to of polymeric fullerene materials on silicon substrates. Active ester chemistry was employed in order to prepare the polymeric fullerene materials and graft these materials covalently on amino-functionalized silicon substrates.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn