860 resultados para Mining equipment
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
This chapter addresses a topic of growing significance to green criminology - the harmful effects of mining on local communities and the environment (Ruggiero and South 2013; White 2013a). While mining has long been recognised as an agent of environmental harm (White 2013a), less recognised is that its global expansion also has harmful effects on localised patterns of violence, work and community life in mining towns. Australia provides an excellent case study for exploring some of these mining impacts.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
This paper proposes the Clinical Pathway Analysis Method (CPAM) approach that enables the extraction of valuable organisational and medical information on past clinical pathway executions from the event logs of healthcare information systems. The method deals with the complexity of real-world clinical pathways by introducing a perspective-based segmentation of the date-stamped event log. CPAM enables the clinical pathway analyst to effectively and efficiently acquire a profound insight into the clinical pathways. By comparing the specific medical conditions of patients with the factors used for characterising the different clinical pathway variants, the medical expert can identify the best therapeutic option. Process mining-based analytics enables the acquisition of valuable insights into clinical pathways, based on the complete audit traces of previous clinical pathway instances. Additionally, the methodology is suited to assess guideline compliance and analyse adverse events. Finally, the methodology provides support for eliciting tacit knowledge and providing treatment selection assistance.
Resumo:
Rolling-element bearing failures are the most frequent problems in rotating machinery, which can be catastrophic and cause major downtime. Hence, providing advance failure warning and precise fault detection in such components are pivotal and cost-effective. The vast majority of past research has focused on signal processing and spectral analysis for fault diagnostics in rotating components. In this study, a data mining approach using a machine learning technique called anomaly detection (AD) is presented. This method employs classification techniques to discriminate between defect examples. Two features, kurtosis and Non-Gaussianity Score (NGS), are extracted to develop anomaly detection algorithms. The performance of the developed algorithms was examined through real data from a test to failure bearing. Finally, the application of anomaly detection is compared with one of the popular methods called Support Vector Machine (SVM) to investigate the sensitivity and accuracy of this approach and its ability to detect the anomalies in early stages.
Resumo:
Big Data and predictive analytics have received significant attention from the media and academic literature throughout the past few years, and it is likely that these emerging technologies will materially impact the mining sector. This short communication argues, however, that these technological forces will probably unfold differently in the mining industry than they have in many other sectors because of significant differences in the marginal cost of data capture and storage. To this end, we offer a brief overview of what Big Data and predictive analytics are, and explain how they are bringing about changes in a broad range of sectors. We discuss the “N=all” approach to data collection being promoted by many consultants and technology vendors in the marketplace but, by considering the economic and technical realities of data acquisition and storage, we then explain why a “n « all” data collection strategy probably makes more sense for the mining sector. Finally, towards shaping the industry’s policies with regards to technology-related investments in this area, we conclude by putting forward a conceptual model for leveraging Big Data tools and analytical techniques that is a more appropriate fit for the mining sector.
Resumo:
With the explosion of information resources, there is an imminent need to understand interesting text features or topics in massive text information. This thesis proposes a theoretical model to accurately weight specific text features, such as patterns and n-grams. The proposed model achieves impressive performance in two data collections, Reuters Corpus Volume 1 (RCV1) and Reuters 21578.
Resumo:
In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.
Resumo:
My thesis examined an alternative approach, referred to as the unitary taxation approach to the allocation of profit, which arises from the notion that as a multinational group exists as a single economic entity, it should be taxed as one taxable unit. The plausibility of a unitary taxation regime achieving international acceptance and agreement is highly contestable due to its implementation issues, and economic and political feasibility. Using a case-study approach focusing on Freeport-McMoRan and Rio Tinto's mining operations in Indonesia, this thesis compares both tax regimes against the criteria for a good tax system - equity, efficiency, neutrality and simplicity. This thesis evaluates key issues that arise when implementing a unitary taxation approach with formulary apportionment based on the context of mining multinational firms in Indonesia.
Resumo:
Australia’s rangelands are the extensive arid and semi-arid grazing lands that cover approximately 70% of the Australian continent. They are characterised by low and generally variable rainfall, low productivity and a sparse population. They support a number of industries including mining and tourism, but pastoralism is the primary land use. In some areas, the rangelands have a history of biological decline (Noble 1997), with erosion, loss of perennial native grasses and incursion of woody vegetation commonly reported in the scientific and lay literature. Despite our historic awareness of these trends, the establishment of systems to measure and monitor degradation, has presented numerous problems. The size and accessibility of Australia’s rangeland often mitigates development of extensive monitoring programs. So, too, securing on-going commitment from Government agencies to fund rangeland monitoring activities have led to either abandonment or a scaled-down approach in some instances (Graetz et al. 1986; Holm 1993). While a multiplicity of monitoring schemes have been developed for landholders at the property scale, and some have received promising initial uptake, relatively few have been maintained for more than a few years on any property without at least some agency support (Pickup et al. 1998). But, ironically, such property level monitoring tools can contribute significantly to local decisions about stock, infrastructure and sustainability. Research in recent decades has shown the value of satellites for monitoring change in rangelands (Wallace et al. 2004), especially in terms of tree and ground cover. While steadily improving, use of satellite data as a monitoring tool has been limited by the cost of the imagery, and the equipment and expertise needed to extract useful information from it. A project now under way in the northern rangelands of Australia is attempting to circumvent many of the problems through a monitoring system that allows property managers to use long-term satellite image sequences to quickly and inexpensively track changes in land cover on their properties
Resumo:
Traction is recognised as an important component of the overall playability and safety of a sportsfield. It relates to the "grip", or footing, provided through an athlete's shoe when in contact with the surface, and is normally measured by the torque generated when a weighted studded disc apparatus is dropped onto the turf and twisted manually. This paper describes the development of an automated traction tester, which mechanises the dropping and twisting of the weighted studded disc. By standardising these operational stages, more repeatable and reliable results can be expected than from the original hand-operated design where positioning of the disc and speed of rotation are controlled manually and so can vary from one measurement to the next. As well as measuring the maximum torque reached during rotation of the studded disc, the automated traction tester generates a profile of torque showing changes over time and calculates the angle through which the studded disc moved before reaching maximum torque. These aspects are now covered by a utility patent (PAT/AU/2004270767). Use of the automated traction tester is illustrated by comparative data for a range of warm-season turfgrasses, by comparisons of traction under different surface conditions generated by wear on Cynodon dactylon cultivars, and by the effects of environment, management and playing patterns on traction across a multi-use sports stadium.
Resumo:
Existing process mining techniques provide summary views of the overall process performance over a period of time, allowing analysts to identify bottlenecks and associated performance issues. However, these tools are not de- signed to help analysts understand how bottlenecks form and dissolve over time nor how the formation and dissolution of bottlenecks – and associated fluctua- tions in demand and capacity – affect the overall process performance. This paper presents an approach to analyze the evolution of process performance via a notion of Staged Process Flow (SPF). An SPF abstracts a business process as a series of queues corresponding to stages. The paper defines a number of stage character- istics and visualizations that collectively allow process performance evolution to be analyzed from multiple perspectives. The approach has been implemented in the ProM process mining framework. The paper demonstrates the advantages of the SPF approach over state-of-the-art process performance mining tools using two real-life event logs publicly available.
Resumo:
The international traveller needs to plan ahead to ensure medicines are available and used as directed for optimal therapeutic outcome. The planning needs to take account of legal and customs requirements for travelling with medicines for personal use. The standard advice by travel health providers is that travellers should check with the country of destination for requirements when travelling into the country with medicines for personal use. This is akin to introducing a barrier to care for this category of travellers. Innovative method of care for this group of traveller is needed.
Resumo:
Cat's claw creeper, Dolichandra unguis-cati (L.) L.G. Lohman (syn: Macfadyena unguis-cati (L.) A.H. Gentry) (Bignoniaceae), a major environmental weed in Queensland and New South Wales, is a Weed of National Significance and an approved target for biological control. A leaf-mining jewel beetle, Hylaeogena jureceki Obenberger (Coleoptera: Buprestidae), first collected in 2002 from D. unguis-cati in Brazil and Argentina, was imported from South Africa into a quarantine facility in Brisbane in 2009 for host-specificity testing. H. jureceki adults chew holes in leaves and lay eggs on leaf margins and the emerging larvae mine within the leaves of D. unguis-cati. The generation time (egg to adult) of H. jureceki under quarantine conditions was 55.4 ± 0.2 days. Host-specificity trials conducted in Australia on 38 plant species from 11 families supplement and support South African studies which indicated that H. jureceki is highly host-specific and does not pose a risk to any non-target plant species in Australia. In no-choice tests, adults survived significantly longer (>32 weeks) on D. unguis-cati than on non-target test plant species (<3 weeks). Oviposition occurred on D. unguis-cati and one non-target test plant species, Citharexylum spinosum (Verbenaceae), but no larval development occurred on the latter species. In choice tests involving D. unguis-cati, C. spinosum and Avicennia marina (Avicenniaceae), feeding and oviposition were evident only on D. unguis-cati. The insect was approved for field release in Australia in May 2012.