982 resultados para Metalorganic Chemical Vapor Deposition
Resumo:
Multi-sheet InGaN/GaN quantum dots (QDs) were grown successfully by surface passivation processing and low-temperature growth in metalorganic chemical vapor deposition. This method based on the principle of increasing the energy barrier of adatom hopping by surface passivation and low-temperature growth, is quite different from present methods. The InGaN quantum dots in the first layer of about 40-nm-wide and 15-nm-high grown by this method were revealed by atomic force microscopy. The InGaN QDs in upper layer grew bigger. To our knowledge, the current-voltage characteristics of multi-sheet InGaN/GaN QDs were measured for the fist time. Two kinds of resonance-tunneling-current features were observed which were attributed to the low-dimensional localization effect. Some current peaks only appeared in positive voltage for sample due to the non-uniformity of the QDs in the structure. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The structural characteristic of cubic GaN (C-GaN) nucleation layers on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition was in detail investigated first by X-ray diffraction (XRD) measurements, using a Huber five-circle diffractometer and an intense synchrotron X-ray source. The XRD results indicate that the C-GaN nucleation layers are highly crystallized. Phi scans and pole figures of the (1 1 1) reflections give a convincing proof that the GaN nucleation layers show exactly cubic symmetrical structure. The GaN(1 1 1) reflections at 54.74degrees in chi are a measurable component, however (002) components parallel to the substrate surface are not detected. Possible explanations are suggested. The pole figures of {1 0 (1) over bar 0} reflections from H-GaN inclusions show that the parasitic H-GaN originates from the C-GaN nucleation layers. The coherence lengths along the close-packed [1 1 1] directions estimated from the (1 1 1) peaks are nanometer order of magnitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition. The growth process was featured by using an ultrathin AlN wetting layer (WL) in combination with a low-temperature (LT) GaN nucleation layer (NL). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the GaN (0 0 0 2) diffraction was 15 arcmin. The dislocation density estimated from TEM investigation was found to be of the order of 10(9)cm(-2). The FWHM of the dominant band edge emission peak of the GaN was measured to be 47 meV by photoluminescence measurement at room temperature. The ultrathin AlN WL was produced by nitridation of the aluminium pre-covered substrate surface. The reflection high-energy electron diffraction showed that the AlN WL was wurtzite and the surface morphology was like the nitridated surface of sapphire by the atomic force microscopy measurement. X-ray photoelectron spectroscopy measurement showed that Si and SixNy at a certain concentration were intermixed in the AlN WL. This study suggests that by employing an appropriate WL combined with a LT NL, high-quality heteroepitaxy is achievable even with large mismatch. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
gamma-Al2O3 films were grown on Si (10 0) substrates using the sources of TMA (AI(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. The effects of temperature control on the crystalline quality, surface morphology, uniformity and dielectricity were investigated. It has been found that the,gamma-Al2O3 film prepared at a temperature of 1000degreesC has a good crystalline quality, but the surface morphology, uniformity and dielectricity were poor due to the etching reaction between 0, and Si substrate in the initial growth stage. However, under a temperature-varied multi-step process the properties Of gamma-Al2O3 film were improved. The films have a mirror-like surface and the dielectricity was superior to that grown under a single-step process. The uniformity of gamma-Al2O3 films for 2-in epi-wafer was <5%, it is better than that disclosed elsewhere. In order to improve the crystalline quality, the gamma-Al2O3 films were annealed for I h in O-2 atmosphere. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A determination of {1 1 1}A and {1 1 1}B in cubic GaN(c-GaN) was investigated by X-ray diffraction technique in detail. The c-GaN films are grown on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition(MOCVD). The difference of integrated intensities measured by omega scan for the different order diffractions from {1 1 1}A and {1 1 1}B planes in the four-circle diffractometer gives convincing evidence as to which is the {1 1 1}A and which is the {1 1 1}B planes. The lesser deviation between the ratios of /F-h k l/(2)//F-(h) over bar (k) over bar (l) over bar/(2) and the calculated values after dispersion correction for atomic scattering factor shows that the content of parasitic hexagonal GaN(h-GaN) grown on c-GaN{1 1 1}A planes is higher than that on {1 1 1}B planes. The reciprocal space mappings provide additional proof that the h-GaN inclusions in c-GaN films appear as lamellar structure. (C) 2001 Published by Elsevier Science B.V.
Resumo:
We report the investigation of temperature and excitation power dependence in photoluminescence spectroscopy measured in Mg-doped GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition, The objective is to examine the effects of rapid-thermal annealing on Mg-related emissions. It is observed that the peak position of the 2.7-2.8 eV emission line is a function of the device temperature and annealing conditions, The phenomenon is attributed to Coulomb-potential fluctuations in the conduction and valence band edge and impurity levels due to the Mg-related complex dissociation. The blue shift of the 2.7-2.8 eV emission line with increasing excitation power provides clear evidence that a donor-acceptor recombination process underlies the observed emission spectrum. In addition, quenching of minor peaks at 3.2 and 3.3 eV are observed and their possible origin is discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The investigation of AlxGa1-xAs/GaAs solar cells is carried out by means of both metalorganic chemical vapor deposition (MOCVD) and liquid-phase epitaxial (LPE) technique. The measurements of illuminated I-V characteristics, dark I-V characteristics and quantum efficiencies were performed for the GaAs solar cells made in author's laboratory. The measuring results revealed that the quality of materials in GaAs solar cell's structures is the key factor for getting high-efficient GaAs solar cells, but the effect of post-growth technology on the performances of GaAs solar cells is also very strong. The 21.95% (AM0, 2 x 2cm(2), 25 degreesC) high conversion efficiency in a typical GaAs solar cell has been achieved owing to improving the quality of materials as well as optimizing the post-growth technology of devices. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic InxGa1-xN films were successfully grown on GaAs(001) substrates by metalorganic chemical-vapor deposition. The values of x content ranging from 0.10 to 0.24 obtained at different growth conditions were measured by double-crystal x-ray diffraction (XRD). The perpendicular and parallel elastic strain of the In0.2Ga0.8N layer, epsilon(perpendicular to)=0.4% and epsilon(parallel to)=-0.4% for GaN and epsilon(perpendicular to)=0.37% and epsilon(parallel to)=-0.37% for InGaN, respectively, were derived using the XRD measurements. The inhomogeneous strain and the average grain size of the In0.2Ga0.8N/GaN films were also studied by XRD. Photoluminescence spectra were used to measure the optical characterization of the InxGa1-xN thin films with different In composition, and the near-band-edge emission dependence of cubic InxGa1-xN on the x value is nearly linear with In content x less than or equal to 0.24. (C) 2000 American Institute of Physics. [S0021-8979(00)03908-6].
Resumo:
A 1.3-mu m AlGaInAs/InP buried heterostructure (BH) stripe distributed feedback laser with a novel AlInAs/InP complex-coupled grating grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) is proposed and demonstrated. A high characteristic temperature (T-0 = 90K between 20-80 degrees C) and temperature-insensitive slope efficiency (0.25 dB drop from 20 to 80 degrees C) in 1.3 mu m AlGaInAs/InP DFB lasers was obtained by introducing AI(Ga)InAs graded-index separate-confinement heterostructure (GRINSCH) layers and a strained-compensated (SC) multi-quantum well (MQW).
Resumo:
The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.
Resumo:
Wurtzite GaN films have been grown on (001) Si substrates using gamma-Al2O3 as an intermediate layer by low pressure (similar to 76 Torr) metalorganic chemical vapor deposition. Reflection high energy electron diffraction and double crystal x-ray diffraction measurements revealed that the thin gamma-Al2O3 layer of "compliant" character was an effective intermediate layer for the GaN film grown epitaxially on Si. The narrowest linewidth of the x-ray rocking curve for (0002) diffraction of the 1.3 mu m GaN sample was 54 arcmin. The orientation relationship of GaN/gamma-Al2O3/Si was (0001) GaN parallel to(001) gamma-Al2O3 parallel to(001) Si, [11-20] GaN parallel to[110] gamma-Al2O3 parallel to[110] Si. The photoluminescence measurement for GaN at room temperature exhibited a near band-edge peak of 365 nm (3.4 eV). (C) 1998 American Institute of Physics.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.