998 resultados para Mechanism (Philosophy)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of gel-to-crystallite conversion process is made towards the synthesis of nanocrystalline titanates and aluminates. Thermodynamic and kinetic factors governing the conversion of a gel to meta-stable and stable nanocrystalline products(s) are discussed. Correlations between these factors and the preparative conditions employed for the syntheses of titanates and aluminates are arrived at.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monograph describes the emergence of independent research on logic in Finland. The emphasis is placed on three well-known students of Eino Kaila: Georg Henrik von Wright (1916-2003), Erik Stenius (1911-1990), and Oiva Ketonen (1913-2000), and their research between the early 1930s and the early 1950s. The early academic work of these scholars laid the foundations for today's strong tradition in logic in Finland and also became internationally recognized. However, due attention has not been given to these works later, nor have they been comprehensively presented together. Each chapter of the book focuses on the life and work of one of Kaila's aforementioned students, with a fourth chapter discussing works on logic by authors who would later become known within other disciplines. Through an extensive use of correspondence and other archived material, some insight has been gained into the persons behind the academic personae. Unique and unpublished biographical material has been available for this task. The chapter on Oiva Ketonen focuses primarily on his work on what is today known as proof theory, especially on his proof theoretical system with invertible rules that permits a terminating root-first proof search. The independency of the parallel postulate is proved as an example of the strength of root-first proof search. Ketonen was to our knowledge Gerhard Gentzen's (the 'father' of proof theory) only student. Correspondence and a hitherto unavailable autobiographic manuscript, in addition to an unpublished article on the relationship between logic and epistemology, is presented. The chapter on Erik Stenius discusses his work on paradoxes and set theory, more specifically on how a rigid theory of definitions is employed to avoid these paradoxes. A presentation by Paul Bernays on Stenius' attempt at a proof of the consistency of arithmetic is reconstructed based on Bernays' lecture notes. Stenius correspondence with Paul Bernays, Evert Beth, and Georg Kreisel is discussed. The chapter on Georg Henrik von Wright presents his early work on probability and epistemology, along with his later work on modal logic that made him internationally famous. Correspondence from various archives (especially with Kaila and Charlie Dunbar Broad) further discusses his academic achievements and his experiences during the challenging circumstances of the 1940s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-drug interactions may cause serious, even fatal clinical consequences. Therefore, it is important to examine the interaction potential of new chemical entities early in drug development. Mechanism-based inhibition is a pharmacokinetic interaction type, which causes irreversible loss of enzyme activity and can therefore lead to unusually profound and long-lasting consequences. The in vitro in vivo extrapolation (IVIVE) of drug-drug interactions caused by mechanism-based inhibition is challenging. Consequently, many of these interactions have remained unrecognised for many years. The concomitant use of the fibrate-class lipid-lowering agent gemfibrozil increases the concentrations of some drugs and their effects markedly. Even fatal cases of rhabdomyolysis occurred in patients administering gemfibrozil and cerivastatin concomitantly. One of the main mechanisms behind this effect is the mechanism-based inhibition of the cytochrome P450 (CYP) 2C8 enzyme by a glucuronide metabolite of gemfibrozil leading to increased cerivastatin concentrations. Although the clinical use of gemfibrozil has clearly decreased during recent years, gemfibrozil is still needed in some special cases. To enable safe use of gemfibrozil concomitantly with other drugs, information concerning the time and dose relationships of CYP2C8 inhibition by gemfibrozil should be known. This work was carried out as four in vivo clinical drug-drug interaction studies to examine the time and dose relationships of the mechanism-based inhibitory effect of gemfibrozil on CYP2C8. The oral antidiabetic drug repaglinide was used as a probe drug for measuring CYP2C8 activity in healthy volunteers. In this work, mechanism-based inhibition of the CYP2C8 enzyme by gemfibrozil was found to occur rapidly in humans. The inhibitory effect developed to its maximum already when repaglinide was given 1-3 h after gemfibrozil intake. In addition, the inhibition was shown to abate slowly. A full recovery of CYP2C8 activity, as measured by repaglinide metabolism, was achieved 96 h after cessation of gemfibrozil treatment. The dose-dependency of the mechanism-based inhibition of CYP2C8 by gemfibrozil was shown for the first time in this work. CYP2C8 activity was halved by a single 30 mg dose of gemfibrozil or by twice daily administration of less than 30 mg of gemfibrozil. Furthermore, CYP2C8 activity was decreased over 90% by a single dose of 900 mg gemfibrozil or twice daily dosing of approximately 100 mg gemfibrozil. In addition, with the application of physiological models to the data obtained in the dose-dependency studies, the major role of mechanism-based inhibition of CYP2C8 in the interaction between gemfibrozil and repaglinide was confirmed. The results of this work enhance the proper use of gemfibrozil and the safety of patients. The information related to time-dependency of CYP2C8 inhibition by gemfibrozil may also give new insights in order to improve the IVIVE of the drug-drug interactions of new chemical entities. The information obtained by this work may be utilised also in the design of clinical drug-drug interaction studies in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to depict the mechanism of coalescence in fibrous bed coalescers, a model coalescer was fabricated. Both water/oil and oil/water dispersions were run through this model coalescer to check for coalescence on PTFE and glass surfaces. The equilibrium contact angle and the dynamic contact angle of the dispersed drops were measured on these surfaces in the presence of the continuous phase. Coalescence was monitored using a microscope. Based on these observations a mechanism of coalescence in the model coalescer is proposed. Different modes of coalescence are correlated to the equilibrium contact angle and the dynamic contact angle. Deposition of dirt on the coalescing surface is observed to result in change of wettability, leading to redispersion of the already coalesced dispersed phase into larger droplets.