967 resultados para Generalized Driven Nonlinear Threshold Model
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Informática
Resumo:
According to a recent Eurobarometer survey (2014), 68% of Europeans tend not to trust national governments. As the increasing alienation of citizens from politics endangers democracy and welfare, governments, practitioners and researchers look for innovative means to engage citizens in policy matters. One of the measures intended to overcome the so-called democratic deficit is the promotion of civic participation. Digital media proliferation offers a set of novel characteristics related to interactivity, ubiquitous connectivity, social networking and inclusiveness that enable new forms of societal-wide collaboration with a potential impact on leveraging participative democracy. Following this trend, e-Participation is an emerging research area that consists in the use of Information and Communication Technologies to mediate and transform the relations among citizens and governments towards increasing citizens’ participation in public decision-making. However, despite the widespread efforts to implement e-Participation through research programs, new technologies and projects, exhaustive studies on the achieved outcomes reveal that it has not yet been successfully incorporated in institutional politics. Given the problems underlying e-Participation implementation, the present research suggested that, rather than project-oriented efforts, the cornerstone for successfully implementing e-Participation in public institutions as a sustainable added-value activity is a systematic organisational planning, embodying the principles of open-governance and open-engagement. It further suggested that BPM, as a management discipline, can act as a catalyst to enable the desired transformations towards value creation throughout the policy-making cycle, including political, organisational and, ultimately, citizen value. Following these findings, the primary objective of this research was to provide an instrumental model to foster e-Participation sustainability across Government and Public Administration towards a participatory, inclusive, collaborative and deliberative democracy. The developed artefact, consisting in an e-Participation Organisational Semantic Model (ePOSM) underpinned by a BPM-steered approach, introduces this vision. This approach to e-Participation was modelled through a semi-formal lightweight ontology stack structured in four sub-ontologies, namely e-Participation Strategy, Organisational Units, Functions and Roles. The ePOSM facilitates e-Participation sustainability by: (1) Promoting a common and cross-functional understanding of the concepts underlying e-Participation implementation and of their articulation that bridges the gap between technical and non-technical users; (2) Providing an organisational model which allows a centralised and consistent roll-out of strategy-driven e-Participation initiatives, supported by operational units dedicated to the execution of transformation projects and participatory processes; (3) Providing a standardised organisational structure, goals, functions and roles related to e-Participation processes that enhances process-level interoperability among government agencies; (4) Providing a representation usable in software development for business processes’ automation, which allows advanced querying using a reasoner or inference engine to retrieve concrete and specific information about the e-Participation processes in place. An evaluation of the achieved outcomes, as well a comparative analysis with existent models, suggested that this innovative approach tackling the organisational planning dimension can constitute a stepping stone to harness e-Participation value.
Resumo:
We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.
Resumo:
This paper proposes and validates a model-driven software engineering technique for spreadsheets. The technique that we envision builds on the embedding of spreadsheet models under a widely used spreadsheet system. This means that we enable the creation and evolution of spreadsheet models under a spreadsheet system. More precisely, we embed ClassSheets, a visual language with a syntax similar to the one offered by common spreadsheets, that was created with the aim of specifying spreadsheets. Our embedding allows models and their conforming instances to be developed under the same environment. In practice, this convenient environment enhances evolution steps at the model level while the corresponding instance is automatically co-evolved.Finally,wehave designed and conducted an empirical study with human users in order to assess our technique in production environments. The results of this study are promising and suggest that productivity gains are realizable under our model-driven spreadsheet development setting.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
General introductionThe Human Immunodeficiency/Acquired Immunodeficiency Syndrome (HIV/AIDS) epidemic, despite recent encouraging announcements by the World Health Organization (WHO) is still today one of the world's major health care challenges.The present work lies in the field of health care management, in particular, we aim to evaluate the behavioural and non-behavioural interventions against HIV/AIDS in developing countries through a deterministic simulation model, both in human and economic terms. We will focus on assessing the effectiveness of the antiretroviral therapies (ART) in heterosexual populations living in lesser developed countries where the epidemic has generalized (formerly defined by the WHO as type II countries). The model is calibrated using Botswana as a case study, however our model can be adapted to other countries with similar transmission dynamics.The first part of this thesis consists of reviewing the main mathematical concepts describing the transmission of infectious agents in general but with a focus on human immunodeficiency virus (HIV) transmission. We also review deterministic models assessing HIV interventions with a focus on models aimed at African countries. This review helps us to recognize the need for a generic model and allows us to define a typical structure of such a generic deterministic model.The second part describes the main feed-back loops underlying the dynamics of HIV transmission. These loops represent the foundation of our model. This part also provides a detailed description of the model, including the various infected and non-infected population groups, the type of sexual relationships, the infection matrices, important factors impacting HIV transmission such as condom use, other sexually transmitted diseases (STD) and male circumcision. We also included in the model a dynamic life expectancy calculator which, to our knowledge, is a unique feature allowing more realistic cost-efficiency calculations. Various intervention scenarios are evaluated using the model, each of them including ART in combination with other interventions, namely: circumcision, campaigns aimed at behavioral change (Abstain, Be faithful or use Condoms also named ABC campaigns), and treatment of other STD. A cost efficiency analysis (CEA) is performed for each scenario. The CEA consists of measuring the cost per disability-adjusted life year (DALY) averted. This part also describes the model calibration and validation, including a sensitivity analysis.The third part reports the results and discusses the model limitations. In particular, we argue that the combination of ART and ABC campaigns and ART and treatment of other STDs are the most cost-efficient interventions through 2020. The main model limitations include modeling the complexity of sexual relationships, omission of international migration and ignoring variability in infectiousness according to the AIDS stage.The fourth part reviews the major contributions of the thesis and discusses model generalizability and flexibility. Finally, we conclude that by selecting the adequate interventions mix, policy makers can significantly reduce the adult prevalence in Botswana in the coming twenty years providing the country and its donors can bear the cost involved.Part I: Context and literature reviewIn this section, after a brief introduction to the general literature we focus in section two on the key mathematical concepts describing the transmission of infectious agents in general with a focus on HIV transmission. Section three provides a description of HIV policy models, with a focus on deterministic models. This leads us in section four to envision the need for a generic deterministic HIV policy model and briefly describe the structure of such a generic model applicable to countries with generalized HIV/AIDS epidemic, also defined as pattern II countries by the WHO.
Resumo:
The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the longvelocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f (c)~exp (−cⁿ), with n ≈1.2, regarding less the fragmentation mechanisms
Resumo:
Models of codon evolution have attracted particular interest because of their unique capabilities to detect selection forces and their high fit when applied to sequence evolution. We described here a novel approach for modeling codon evolution, which is based on Kronecker product of matrices. The 61 × 61 codon substitution rate matrix is created using Kronecker product of three 4 × 4 nucleotide substitution matrices, the equilibrium frequency of codons, and the selection rate parameter. The entities of the nucleotide substitution matrices and selection rate are considered as parameters of the model, which are optimized by maximum likelihood. Our fully mechanistic model allows the instantaneous substitution matrix between codons to be fully estimated with only 19 parameters instead of 3,721, by using the biological interdependence existing between positions within codons. We illustrate the properties of our models using computer simulations and assessed its relevance by comparing the AICc measures of our model and other models of codon evolution on simulations and a large range of empirical data sets. We show that our model fits most biological data better compared with the current codon models. Furthermore, the parameters in our model can be interpreted in a similar way as the exchangeability rates found in empirical codon models.
Resumo:
Most facility location decision models ignore the fact that for a facility to survive it needs a minimum demand level to cover costs. In this paper we present a decision model for a firm thatwishes to enter a spatial market where there are several competitors already located. This market is such that for each outlet there is a demand threshold level that has to be achievedin order to survive. The firm wishes to know where to locate itsoutlets so as to maximize its market share taking into account the threshold level. It may happen that due to this new entrance, some competitors will not be able to meet the threshold and therefore will disappear. A formulation is presented together with a heuristic solution method and computational experience.
Resumo:
In many research areas (such as public health, environmental contamination, and others) one deals with the necessity of using data to infer whether some proportion (%) of a population of interest is (or one wants it to be) below and/or over some threshold, through the computation of tolerance interval. The idea is, once a threshold is given, one computes the tolerance interval or limit (which might be one or two - sided bounded) and then to check if it satisfies the given threshold. Since in this work we deal with the computation of one - sided tolerance interval, for the two-sided case we recomend, for instance, Krishnamoorthy and Mathew [5]. Krishnamoorthy and Mathew [4] performed the computation of upper tolerance limit in balanced and unbalanced one-way random effects models, whereas Fonseca et al [3] performed it based in a similar ideas but in a tow-way nested mixed or random effects model. In case of random effects model, Fonseca et al [3] performed the computation of such interval only for the balanced data, whereas in the mixed effects case they dit it only for the unbalanced data. For the computation of twosided tolerance interval in models with mixed and/or random effects we recomend, for instance, Sharma and Mathew [7]. The purpose of this paper is the computation of upper and lower tolerance interval in a two-way nested mixed effects models in balanced data. For the case of unbalanced data, as mentioned above, Fonseca et al [3] have already computed upper tolerance interval. Hence, using the notions persented in Fonseca et al [3] and Krishnamoorthy and Mathew [4], we present some results on the construction of one-sided tolerance interval for the balanced case. Thus, in order to do so at first instance we perform the construction for the upper case, and then the construction for the lower case.