977 resultados para Gauss-Bonnet theorem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella presente tesi ci siamo occupati dell'equazione di curvatura di Gauss-Levi, prima introducendo le nozioni necessarie alla sua definizione, poi cercandone soluzioni viscose. A tale scopo abbiamo introdotto in generale la nozione di soluzione viscosa per operatori ellittici degeneri, dimostrandone l'esistenza grazie al Principio del Confronto e al Metodo di Perron. Abbiamo infine riportato alcuni risultati che collegano le soluzioni viscose dell'equazione di curvatura, a quelle classiche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sei $\pi:X\rightarrow S$ eine \"uber $\Z$ definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul $M\subset H^3_{DR}(X/S)$ von Rang vier, sodass der Picard-Fuchs Operator $P$ auf $M$ ein sogenannter {\em Calabi-Yau } Operator von Ordnung vier ist. Sei $k$ ein endlicher K\"orper der Charaktetristik $p$, und sei $\pi_0:X_0\rightarrow S_0$ die Reduktion von $\pi$ \uber $k$. F\ur die gew\ohnlichen (ordinary) Fasern $X_{t_0}$ der Familie leiten wir eine explizite Formel zur Berechnung des charakteristischen Polynoms des Frobeniusendomorphismus, des {\em Frobeniuspolynoms}, auf dem korrespondierenden Untermodul $M_{cris}\subset H^3_{cris}(X_{t_0})$ her. Sei nun $f_0(z)$ die Potenzreihenl\osung der Differentialgleichung $Pf=0$ in einer Umgebung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in einem Teichm\uller-Punkt $t$ durch $f_0(z)/f_0(z^p)|_{z=t}$ gegeben ist, ist ein entscheidender Schritt in der Berechnung des Frobeniuspolynoms die Konstruktion einer $p-$adischen analytischen Fortsetzung des Quotienten $f_0(z)/f_0(z^p)$ auf den Rand des $p-$adischen Einheitskreises. Kann man die Koeffizienten von $f_0$ mithilfe der konstanten Terme in den Potenzen eines Laurent-Polynoms, dessen Newton-Polyeder den Ursprung als einzigen inneren Gitterpunkt enth\alt, ausdr\ucken,so beweisen wir gewisse Kongruenz-Eigenschaften unter den Koeffizienten von $f_0$. Diese sind entscheidend bei der Konstruktion der analytischen Fortsetzung. Enth\alt die Faser $X_{t_0}$ einen gew\ohnlichen Doppelpunkt, so erwarten wir im Grenz\ubergang, dass das Frobeniuspolynom in zwei Faktoren von Grad eins und einen Faktor von Grad zwei zerf\allt. Der Faktor von Grad zwei ist dabei durch einen Koeffizienten $a_p$ eindeutig bestimmt. Durchl\auft nun $p$ die Menge aller Primzahlen, so erwarten wir aufgrund des Modularit\atssatzes, dass es eine Modulform von Gewicht vier gibt, deren Koeffizienten durch die Koeffizienten $a_p$ gegeben sind. Diese Erwartung hat sich durch unsere umfangreichen Rechnungen best\atigt. Dar\uberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspolynoms her, in welchen auch die nicht-holomorphen L\osungen der Gleichung $Pf=0$ in einer Umgebung der Null eine Rolle spielen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La trasformata di Karhunen-Loève monodimensionale è la decomposizione di un processo stocastico del secondo ordine a parametrizzazione continua in coefficienti aleatori scorrelati. Nella presente dissertazione, la trasformata è ottenuta per via analitica, proiettando il processo, considerato in un intervallo di tempo limitato [a,b], su una base deterministica ottenuta dalle autofunzioni dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori positivi. Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori positivi dell'operatore integrale di Hilbert-Schmidt, che ha in Kernel la funzione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura genera coefficienti aleatori che si rivelano variabili aleatorie centrate e scorrelate. L'espansione in serie che risulta dalla trasformata è una combinazione lineare numerabile di coefficienti aleatori di proiezione ed autofunzioni convergente in media quadratica al processo, uniformemente sull'intervallo temporale. Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo spazio di probabilità (O,F,P). Esistono molte altre espansioni in serie di questo tipo, tuttavia la trasformata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto all'errore totale in media quadratica che consegue al troncamento della serie. Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni un notevole successo tra le discipline applicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Justification logics are refinements of modal logics where modalities are replaced by justification terms. They are connected to modal logics via so-called realization theorems. We present a syntactic proof of a single realization theorem that uniformly connects all the normal modal logics formed from the axioms \$mathsfd\$, \$mathsft\$, \$mathsfb\$, \$mathsf4\$, and \$mathsf5\$ with their justification counterparts. The proof employs cut-free nested sequent systems together with Fitting's realization merging technique. We further strengthen the realization theorem for \$mathsfKB5\$ and \$mathsfS5\$ by showing that the positive introspection operator is superfluous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some recent results of Khukhro and Makarenko on the existence of characteristic X-subgroups of finite index in a group G, for certain varieties X, are used to obtain generalisations of some well-known results in the literature pertaining to groups G, in which all proper subgroups satisfy some condition or other related to the property 'soluble-by-finite'. In addition, a partial generalisation is obtained for the aforementioned results on the existence of characteristic subgroups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1970 Clark Benson published a theorem in the Journal of Algebra stating a congruence for generalized quadrangles. Since then this theorem has been expanded to other specific geometries. In this thesis the theorem for partial geometries is extended to develop new divisibility conditions for the existence of a partial geometry in Chapter 2. Then in Chapter 3 the theorem is applied to higher dimensional arcs resulting in parameter restrictions on geometries derived from these structures. In Chapter 4 we look at extending previous work with partial geometries with α = 2 to uncover potential partial geometries with higher values of α. Finally the theorem is extended to strongly regular graphs in Chapter 5. In addition we obtain expressions for the multiplicities of the eigenvalues of matrices related to the adjacency matrices of these graphs. Finally, a four lesson high school level enrichment unit is included to provide students at this level with an introduction to partial geometries, strongly regular graphs, and an opportunity to develop proof skills in this new context.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2 . The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.