Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law
Data(s) |
07/01/2015
31/12/1969
|
---|---|
Resumo |
We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2 . The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/74320/1/Bures-2015-354.pdf http://boris.unibe.ch/74320/8/2%20BuSi.pdf Bureš, M.; Siegl, Petr (2015). Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law. Annals of physics, 354, pp. 316-327. Elsevier 10.1016/j.aop.2014.12.017 <http://dx.doi.org/10.1016/j.aop.2014.12.017> doi:10.7892/boris.74320 info:doi:10.1016/j.aop.2014.12.017 urn:issn:0003-4916 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://boris.unibe.ch/74320/ |
Direitos |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/embargoedAccess |
Fonte |
Bureš, M.; Siegl, Petr (2015). Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law. Annals of physics, 354, pp. 316-327. Elsevier 10.1016/j.aop.2014.12.017 <http://dx.doi.org/10.1016/j.aop.2014.12.017> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |