958 resultados para GAS-PHASE REACTIONS
Resumo:
Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO(2)) of the gas phase.
Resumo:
Mestrado em Engenharia Química
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Hidráulica
Resumo:
This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase.
Resumo:
The objectives of this work were: (1) to identify an isotherm model to relate the contaminant contents in the gas phase with those in the solid and non-aqueous liquid phases; (2) to develop a methodology for the estimation of the contaminant distribution in the different phases of the soil; and (3) to evaluate the influence of soil water content on the contaminant distribution in soil. For sandy soils with negligible contents of clay and natural organic matter, contaminated with benzene, toluene, ethylbenzene, xylene, trichloroethylene (TCE), and perchloroethylene (PCE), it was concluded that: (1) Freundlich’s model showed to be adequate to relate the contaminant contents in the gas phase with those in the solid and non-aqueous liquid phases; (2) the distribution of the contaminants in the different phases present in the soil could be estimated with differences lower than 10% for 83% of the cases; and (3) an increase of the soil water content led to a decrease of the amount of contaminant in the solid and non-aqueous liquid phases, increasing the amount in the other phases.
Resumo:
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ngm−3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10−6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98×10−7 in PM10 and 1.06×10−6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.
Resumo:
Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.
Resumo:
O solo é um recurso multifuncional e vital para a humanidade, apresentando funções ecológicas, técnico-industriais, socioeconómicas e culturais, estabelecendo um vasto capital natural insubstituível. Face à sua taxa de degradação potencialmente rápida que, devido ao crescente desenvolvimento económico e incremento da população mundial, tem vindo a aumentar nas últimas décadas, o solo é, atualmente, um recurso finito e limitado. Devido a esta problemática, o presente documento visa abordar a progressiva preocupação sobre as questões geoambientais e toda a investigação que as envolvem, avaliando o modo como os contaminantes se dispersam pelo solo nas diferentes fases do mesmo (fases sólida, líquida e gasosa). A parte experimental centrou-se na análise da adsorção do benzeno, a partir da determinação das isotérmicas de adsorção. Para tal, foram previamente preparados reatores com calcário, sendo alguns deles previamente contaminados com um biocombustível, biodiesel, a uma concentração constante. Este processo foi monitorizado com base na evolução temporal da concentração na fase gasosa, através da cromatografia gasosa. De entre os objetivos, procurou-se analisar a distribuição dos contaminantes pelas fases constituintes do solo, ajustar os dados experimentais obtidos os modelos matemáticos de Langmuir, Freundlich e Polinomial, e verificar e discutir as soluções mais adequadas.
Exposure to polycyclic aromatic hydrocarbons and assessment of potential risks in preschool children
Resumo:
As children represent one of the most vulnerable groups in society, more information concerning their exposure to health hazardous air pollutants in school environments is necessary. Polycyclic aromatic hydrocarbons (PAHs) have been identified as priority air pollutants due to their mutagenic and carcinogenic properties that strongly affect human health. Thus, this work aims to characterize levels of 18 selected PAHs in preschool environment, and to estimate exposure and assess the respective risks for 3–5-year-old children (in comparison with adults). Gaseous PAHs (mean of 44.5 ± 12.3 ng m−3) accounted for 87 % of the total concentration (ΣPAHs) with 3–ringed compounds being the most abundant (66 % of gaseous ΣPAHs). PAHs with 5 rings were the most abundant ones in the particulate phase (PM; mean of 6.89 ± 2.85 ng m−3) being predominantly found in PM1 (78 % particulate ΣPAHs). Overall child exposures to PAHs were not significantly different between older children (4–5 years old) and younger ones (3 years old). Total carcinogenic risks due to particulate-bound PAHs indoors were higher than outdoor ones. The estimated cancer risks of both preschool children and the staff were lower than the United States Environmental Protection Agency (USEPA) threshold of 10−6 but slightly higher than WHO-based guideline.
Resumo:
O desenvolvimento de novos materiais e a sua caracterização é de extrema importância no dimensionamento e construção de equipamentos criogénicos. A empresa Versarien desenvolveu uma técnica capaz de produzir cobre poroso, conseguindo controlar a porosidade e o tamanho de poros. Os materiais porosos são de especial interesse para dispositivos criogénicos em aplicações espaciais. Um exemplo desta aplicação são as unidades de armazenamento de energia (Energy Storage Units-ESU), onde um material poroso é usado em ausência de gravidade para reter um líquido criogénico por capilaridade, de modo a manter dispositivos a uma temperatura baixa e constante. Neste caso, um material poroso de elevada condutividade térmica, como o cobre, seria de grande interesse uma vez que permite obter uma boa homogeneidade de temperatura na célula. Neste trabalho foi desenvolvido um sistema para medir a condutividade térmica deste material, entre 15 e 260 K, para porosidades entre 50% e 80%, utilizando um criorrefrigerador 2 W @ 20 K. Estas medições permitiram determinar que a pureza do cobre poroso se encontra entre RRR20 (RRR: Residual-resistivity ratio) e RRR10, apresentando uma tortuosidade que se encontra de acordo com um modelo simples descrito nesta dissertação. Foi ainda desenhado, construído e testado um criostato portátil, que apenas necessita de azoto líquido e de bombeamento primário para que se possam realizar medições de condutividade térmica entre 77 e 300 K.
Resumo:
Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.
Resumo:
A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described
Resumo:
In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.
Resumo:
In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.
Resumo:
Mass spectrometry (MS) is currently the most sensitive and selective analytical technique for routine peptide and protein structure analysis. Top-down proteomics is based on tandem mass spectrometry (MS/ MS) of intact proteins, where multiply charged precursor ions are fragmented in the gas phase, typically by electron transfer or electron capture dissociation, to yield sequence-specific fragment ions. This approach is primarily used for the study of protein isoforms, including localization of post-translational modifications and identification of splice variants. Bottom-up proteomics is utilized for routine high-throughput protein identification and quantitation from complex biological samples. The proteins are first enzymatically digested into small (usually less than ca. 3 kDa) peptides, these are identified by MS or MS/MS, usually employing collisional activation techniques. To overcome the limitations of these approaches while combining their benefits, middle-down proteomics has recently emerged. Here, the proteins are digested into long (3-15 kDa) peptides via restricted proteolysis followed by the MS/MS analysis of the obtained digest. With advancements of high-resolution MS and allied techniques, routine implementation of the middle-down approach has been made possible. Herein, we present the liquid chromatography (LC)-MS/MS-based experimental design of our middle-down proteomic workflow coupled with post-LC supercharging.