942 resultados para Enseñanza de Matemática
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Se estudia la comprensión de los alumnos de los conceptos estadísticos y el apoyo que para dicho proceso pueden ofrecer los equipos informáticos. El objetivo es analizar la capacidad de los alumnos para establecer o descartar la relación entre pares de variables aleatorias y su comprensión de dichas asociaciones. Para ello se comprueba si la capacidad de resolución de problemas utilizando elementos informáticos hace innecesario el conocimiento de los algoritmos concretos de resolución.
Resumo:
Se analiza el papel de los símbolos como instrumentos en el proceso cognitivo de aprendizaje de conceptos matemáticos. Se expone una visión de la didáctica de las matemáticas como una ciencia antropológica frente a la propia epistemología del puro conocimiento matemático, en la que se se hace incapié en los procesos cognitivos de los elementos involucrados en lugar de estudiar la materia dada. Para ello se clasifican las herramientas de enseñanza en ostensivas y no-ostensivas, y se explican las características de cada una de ellas de cara a su comprensión.
Resumo:
Se estudia la enseñanza del cálculo en bachiller y primer curso de universidad. El estudio pretende abordar los problemas generados en la enseñanza de cálculo desde varias perspectivas simultáneamente: los problemas derivados de la naturaleza del propio conocimiento, los relativos al alumno y su manera de asimilar los conocimientos y las dificultades referidas por el profesor a la hora de explicar correctamente la asignatura. Para ello se usan cuestionarios a cumplimentar por los sujetos del estudio.
Resumo:
Se estudia la enseñanza de los números negativos. Para ello en primer lugar se realiza una síntesis de las anteriores investigaciones al respecto de la Universidad de la Laguna. En la segunda parte se realiza una investigación de campo. La misma consiste en la entrega a los alumnos de material elaborado por los investigadores para el aprendizaje de los números negativos. Se analiza el resultado de dicho proceso, con resultado positivo.
Resumo:
Se estudian los trabajos de investigación en didáctica de las matemáticas realizados hasta la fecha de publicación. Se analiza la necesidad de la puesta en común de las diferentes ramas de investigación, así como la conveniencia de buscar metodologías comunes para la expansión de dicho conocimiento. Por último, se expone la adecuación de cada metodología usada para cada tipo de investigación en función de las características de la misma.
Resumo:
Se analizan los cambios de la enseñanza con la introducción de los medios telemáticos. Para ello se hace énfasis en un proyecto de investigación en torno a la formación del profesorado en nuevas tecnologías. Se procura asimismo facilitar a los docentes medios para comunicarse entre ellos y compartir su experiencia con medios telemáticos. También se analizan los procesos cognitivos desarrollados en el aprendizaje online frente a los desarrollados en el aprendizaje tradicional. Por último, también se busca la manera de crear un fondo bibliográfico común que sirva para mejorar la enseñanza en futuras ocasiones.
Resumo:
Se estudia la aplicación de las TIC a la enseñanza de la geometría. Se realizan varias actividades por medios telemáticos dirigidas a alumnos de cuarto de ESO. Se usan el navegador, el correo electrónico y el software sobre geometría Cabri Geometre II. El modelo de apoyo al alumno es mixto, teniendo parte de trabajo por el propio alumno, parte de trabajo asistido por medios telemáticos (mediante un foro habilitado al efecto) y parte de trabajo asistido presencialmente por el profesor. Como apoyo al estudio, se habilitan 14 equipos informáticos conectados mediante una intranet y una línea RDSI de acceso a Internet. Se realizan una serie de encuestas al final del ejercicio relativas a la participación de los alumnos en el foro, su satisfacción con el funcionamiento de la actividad y la el tipo de respuestas dadas. De las mismas se desprende el éxito de la iniciativa. Se concluye también que los sujetos más introvertidos tienen más facilidad para comunicarse a través de la red, siendo así más fácil responder las dudas que se les presentan.
Resumo:
Se describe el grupo de trabajo 'La didáctica de las matemáticas como disciplina científica'. Se explica su estructura. Esta se compone de varios subgrupos asignados a diversas universidades. Se expone también la actividad del grupo de trabajo. En el marco de la misma se describen dos sesiones de discusión. La primera versa sobre el artículo de Juan Díaz Godino 'Análisis epistémico, semiótico y didáctico de procesos de instrucción matemática'. En el citado trabajo se describe una metodología para la enseñanza de las matemáticas. La discusión se centra en la relaciones entre los distintos conceptos implicados en la metodología citada. La segunda sesión se dedica a la discusión sobre el trabajo ''Didactique fondamentale' versus 'Advanced Mathematical thinking' : ¿Dos programas de investigación inconmensurables?', debatiendo sobre la posibilidad de conciliar los puntos de vista expuestos en ambos trabajos.
Resumo:
Se explican los diferentes tipos de demostraciones y su efectividad en la docencia. Se expone la tendencia de los docentes en matemáticas al uso de demostraciones extrictamente formales. Se explica que la procedencia de dicha tendencia es la consideración de las demostraciones formales como las únicas realmente fiables en los entornos matemáticos. Se expone el contraste entre la forma de razonar de los alumnos y las explicaciones de los profesores. Dicho contraste consiste en los tipos de demostración entendidos como correctos por cada uno de ellos. Se explica que los alumnos entienden las demostraciones empíricas pero tienen muchos problemas para aceptar las demostraciones puramente abstractas y formales. Se propone, por lo tanto, cambiar el modelo de enseñanza hacia uno que contemple ambos tipos de demostración.
Resumo:
Se realiza un ensayo sobre la importancia de las hipótesis e ideas intuitivas en la enseñanza de las demostraciones. Se explica el proceso demostrativo como un proceso de conjetura-demostración-refutación. Se expresa que la primera parte es la más intuitiva y basada en lanzar hipótesis a la vista del problema. Se expone que la segunda y la tercera son las de mayor carga de abstracción requiriendo demostrar o refutar leyes matemáticas utilizando la lógica. Se indica que la enseñanza se centra mucho en la parte de demostración-refutación. Se propone centrarla más en la conjetura-demostración por ser mucho más cercana al estudiante ya que éste tiene mucha más facilidad para plantear hipótesis a la vista del problema aunque no sepa razonar con precisión el motivo por el cual la ley es válida. Se explica que de esta manera se puede salvar el abismo inicial entre las habilidades demostrativas del alumno y la dificultad de las demostraciones formales. Se entiende que con la práctica el alumno irá aumentando su capacidad para realizar las tareas deductivas más abstractas. Se comentan varios experimentos realizados sobre alumnos de secundaria que corroboran dichas conclusiones.
Resumo:
Se describe una investigación sobre la enseñanza del número racional en primaria. Dicha investigación consiste en la elaboración de una propuesta didáctica nueva y específica del estudio. El trabajo se tiene como marco conceptual el Pensamiento Numérico. La metodología del trabajo es del tipo investigación-acción. Se realiza en dos etapas. En la primera se interviene en un aula de cuarto curso de primaria. La segunda, por contra, se desarrolla con escolares de quinto curso. Cada una de dichas etapas tiene tres fases. En la primera fase, la de planificación, se analiza la enseñanza actual de los números racionales y los problemas que presenta, y se diseña un plan de enseñanza alternativo. En la segunda fase, la de acción, se lleva a cabo el trabajo de aula de acuerdo a la propuesta didáctica desarrollada. Al final de dicha fase se realiza una prueba a los alumnos para evaluar su progreso. Por último, en la fase de observación se analizan todos los datos obtenidos y se compara el aprendizaje de los escolares respecto a la enseñanza tradicional.