837 resultados para Critical mathematics education
Resumo:
The strategies employed by 130 Grade 5 Brisbane students in comparing decimal numbers which have the same whole-number part were compared with those identified in similar studies conducted in the USA, France and Israel. Three new strategies were identified. Similar to USA results, the most common comparison errors stemmed from the incorrect whole-number strategy in which length is confused with size. The findings of this present study tend to support Resnick et al.’s (1989) hypothesis that the introduction of decimal-fraction recording before common-fraction recording seems to promote better comparison of decimal numbers.
Resumo:
This paper reports on Years 8, 9 and 10 students’ knowledge of percent problem types, use of diagrams, and type of solution strategy. Non- and semi-proficient students displayed the expected inflexible formula approach to solution but proficient students used a flexible mixture of estimation, number sense and trial and error instead of expected schema based methods.
Resumo:
This paper reports on an intervention study planned to help Year 6 students construct the multiplicative structure underlying decimal-number numeration. Three types of intervention were designed from a numeration model developed from a large study of 173 Year 6 students’ decimal-number knowledge. The study found that students could acquire multiplicative structure as an abstract schema if instruction took account of prior knowledge as informed by the model.
Resumo:
This paper reports on a study in which 29 Year 6 students (selected from the top 30% of 176 Year 6 students) were individually interviewed to explore their ability to reunitise hundredths as tenths (Behr, Harel, Post & Lesh, 1992) when represented by prototypic (PRO) and nonprototypic (NPRO) models. The results showed that 55.2% of the students were able to unitise both models and that reunitising was more successful with the PRO model. The interviews revealed that many of these students had incomplete, fragmented or non-existent structural knowledge of the reunitising process and often relied on syntactic clues to complete the tasks. The implication for teaching is that instruction should not be limited to PRO representations of the part/whole notion of fraction and that the basic structures (equal parts, link between name and number of equal parts) of the part/whole notion needs to be revisited often.
Resumo:
Centre for Mathematics and Science Education, QUT, Brisbane, Australia This paper reports on a study in which Years 6 and 10 students were individually interviewed to determine their ability to unitise and reunitise number lines used to represent mixed numbers and improper fractions. Only 16.7% of the students (all Year 6) were successful on all three tasks and, in general, Year 6 students outperformed Year 8 students. The interviews revealed that the remaining students had incomplete, fragmented or non-existent structural knowledge of mixed numbers and improper fractions, and were unable to unitise or reunitise number lines. The implication for teaching is that instruction should focus on providing students with a variety of fraction representations in order to develop rich and flexible schema for all fraction types (mixed numbers, and proper and improper fractions).
Resumo:
Student understanding of decimal number is poor (e.g., Baturo, 1998; Behr, Harel, Post & Lesh, 1992). This paper reports on a study which set out to determine the cognitive complexities inherent in decimal-number numeration and what teaching experiences need to be provided in order to facilitate an understanding of decimal-number numeration. The study gave rise to a theoretical model which incorporated three levels of knowledge. Interview tasks were developed from the model to probe 45 students’ understanding of these levels, and intervention episodes undertaken to help students construct the baseline knowledge of position and order (Level 1 knowledge) and an understanding of multiplicative structure (Level 3 knowledge). This paper describes the two interventions and reports on the results which suggest that helping students construct appropriate mental models is an efficient and effective teaching strategy.
Resumo:
Mathematical problem solving has been the subject of substantial and often controversial research for several decades. We use the term, problem solving, here in a broad sense to cover a range of activities that challenge and extend one’s thinking. In this chapter, we initially present a sketch of past decades of research on mathematical problem solving and its impact on the mathematics curriculum. We then consider some of the factors that have limited previous research on problem solving. In the remainder of the chapter we address some ways in which we might advance the fields of problem-solving research and curriculum development.
Resumo:
An educational priority of many nations is to enhance mathematical learning in early childhood. One area in need of special attention is that of statistics. This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling activities. Such modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (i.e., identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Results are reported from the first year of a three-year longitudinal study in which three classes of first-grade children and their teachers engaged in activities that required the creation of data models. The theme of “Looking after our Environment,” a component of the children’s science curriculum at the time, provided the context for the activities. Findings focus on how the children dealt with given complex attributes and how they generated their own attributes in classifying broad data sets, and the nature of the models the children created in organising, structuring, and representing their data.
Resumo:
This article examines one approach to promoting creative and flexible use of mathematical ideas within an interdisciplinary context in the primary curriculum, namely, through modelling. Three classes of fifth-grade children worked on a modelling problem, The First Fleet (Australia’s settlement), situated within the curriculum domains of science and studies of society and environment. Reported here are the cycles of development displayed by one group of children as they worked the problem, together with the range of models created across the classes. Children developed mathematisation processes that extended beyond their regular curriculum, including identifying and prioritising key problem elements, exploring relationships among elements, quantifying qualitative data, ranking and aggregating data, and creating and working with weighted scores. Aspects of Goldin’s (2000, 2007) affective structures also appeared to play an important role in the children's mathematical developments.
Resumo:
The capacity to solve tasks that contain high concentrations of visual-spatial information, including graphs, maps and diagrams, is becoming increasingly important in educational contexts as well as everyday life. This research examined gender differences in the performance of students solving graphics tasks from the Graphical Languages in Mathematics (GLIM) instrument that included number lines, graphs, maps and diagrams. The participants were 317 Australian students (169 males and 148 females) aged 9 to 12 years. Boys outperformed girls on graphical languages that required the interpretation of information represented on an axis and graphical languages that required movement between two- and three-dimensional representations (generally Map language).
Resumo:
This paper reports on statements from Professional Development participants who were asked to comment on NAPLAN. The participants were involved in a project designed by the YuMi Deadly Centre (YDC) for implementation into 25 Queensland School to enhance the teaching and learning of mathematics to Aboriginal and Torres Strait Islander students and low SES students. Using an action research framework and a survey questionnaire, the preliminary data obtained from participating principals is mixed, with statements indicating that NAPLAN is a high priority for some schools while others indicated that it does not “tell” the whole story of student learning.
Resumo:
A one year mathematics project that focused on measurement was conducted with six Torres Strait Islander schools and communities. Its key focus was to contextualise the teaching and learning of measurement within the students’ culture, communities and home languages. There were six teachers and two teacher aides who participated in the project. This paper reports on the findings from the teachers’ and teacher aides’ survey questionnaire used in the first Professional Development session to identify: a) teachers’ experience of teaching in Torres Strait Islands, b) teachers’ beliefs about effective ways to teach Torres Strait Islander students, and c) contexualising measurement within Torres Strait Islander culture, Communities and home languages. A wide range of differing levels of knowledge and understanding about how to contextualise measurement to support student learning were identified and analysed. For example, an Indigenous teacher claimed that mathematics and the environment are relational, that is, they are not discrete and in isolation from one another, rather they interconnect with mathematical ideas emerging from the environment of the Torres Strait Communities.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.