835 resultados para Computer Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a methodological approach to conditional reasoning in online asynchronous learning environments such as Virtual-U VGroups, developed by SFU, BC, Canada, consistent with the notion of meaning implication: If part of a meaning C is embedded in B and a part of a meaning B is embedded in A, then A implies C in terms of meaning [Piaget 91]. A new transcript analysis technique was developed to assess the flows of conditional meaning implications and to identify the occurrence of hypotheses and connections among them in two human science graduate mixed-mode online courses offered in the summer/spring session of 1997 by SFU. Flows of conditional meaning implications were confronted with Virtual-U VGroups threads and results of the two courses were compared. Findings suggest that Virtual-U VGroups is a knowledge-building environment although the tree-like Virtual-U VGroups threads should be transformed into neuronal-like threads. Findings also suggest that formulating hypotheses together triggers a collaboratively problem-solving process that scaffolds knowledge-building in asynchronous learning environments: A pedagogical technique and an built-in tool for formulating hypotheses together are proposed. © Springer Pub. Co.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents considerations about viability on reutilize existing web based e-Learning systems on Interactive Digital TV environment according to Digital TV standard adopted in Brazil. Considering the popularity of Moodle system in academic and corporative area, such system was chosen as a foundation for a survey into its properties to create a specification of an Application Programming Interface (API) for convergence to t-Learning characteristics that demands efforts in interface design area due the fact that computer and TV concepts are totally different. This work aims to present studies concerning user interface design during two stages: survey and detail of functionalities from an e-Learning system and how to adapt them for the Interactive TV regarding usability context and Information Architecture concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents two tools developed to facilitate the use and automate the process of using Virtual Worlds for educational purposes. The first tool has been developed to automatically create the classroom space, usually called region in the virtual world, which means, a region in the virtual world used to develop educational activities between professors, students and interactive objects. The second tool helps the process of creating 3D interactive objects in a virtual world. With these tools educators will be able to produce 3D interactive learning objects and use them in virtual classrooms improving the quality and appeal, for students, of their classes. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the analysis and evaluation of the Power Electronics course at So Paulo State University-UNESP-Campus of Ilha Solteira(SP)-Brazil, which includes the usage of interactive Java simulations tools and an educational software to aid the teaching of power electronic converters. This platform serves as an oriented course for the lectures and supplementary support for laboratory experiments in the power electronics courses. The simulation tools provide an interactive and dynamic way to visualize the power electronics converters behavior together with the educational software, which contemplates the theory and a list of subjects for circuit simulations. In order to verify the performance and the effectiveness of the proposed interactive educational platform, it is presented a statistical analysis considering the last three years. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to present the use of a learning object (CADILAG), developed to facilitate understanding data structure operations by using visual presentations and animations. The CADILAG allows visualizing the behavior of algorithms usually discussed during Computer Science and Information System courses. For each data structure it is possible visualizing its content and its operation dynamically. Its use was evaluated an the results are presented. © 2012 AISTI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New information and communication technologies may be useful for providing more in-depth knowledge to students in many ways, whether through online multimedia educational material, or through online debates with colleagues, teachers and other area professionals in a synchronous or asynchronous manner. This paper focuses on participation in online discussion in e-learning courses for promoting learning. Although an important theoretical aspect, an analysis of literature reveals there are few studies evaluating the personal and social aspects of online course users in a quantitative manner. This paper aims to introduce a method for diagnosing inclusion and digital proficiency and other personal aspects of the student through a case study comparing Information System, Public Relations and Engineering students at a public university in Brazil. Statistical analysis and analysis of variances (ANOVA) were used as the methodology for data analysis in order to understand existing relations between the components of the proposed method. The survey methodology was also used, in its online format, as a research instrument. The method is based on using online questionnaires that diagnose digital proficiency and time management, level of extroversion and social skills of the students. According to the sample studied, there is no strong correlation between digital proficiency and individual characteristics tied to the use of time, level of extroversion and social skills of students. The differences in course grades for some components are partly due to subject 'Introduction to Economics' being offered to freshmen in Public Relations, whereas subject 'Economics in Engineering' is offered in the final semesters of Engineering and Information Systems courses. Therefore, the difference could be more tied to the respondent's age than to the course. Information Systems students were observed to be older, with access to computers and Internet at the workplace, compared to the other students who access the Internet more often from home. This paper presents a pilot study aimed at conducting a diagnosis that permits proposing actions for information and communication technology to contribute towards student education. Three levels of digital inclusion are described as a scale to measure whether information technology increases personal performance and professional knowledge and skills. This study may be useful for other readers interested in themes related to education in engineering. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG