804 resultados para Computational learning theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Tecnologias e Sistemas de Informação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino de Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distance learning, Canadian educational system, institution, medial learning, school system Saxony-Anhalt, system theory, qualitative research

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develop and estimates a model of demand estimation for environmental public goods which allows for consumers to learn about their preferences through consumption experiences. We develop a theoretical model of Bayesian updating, perform comparative statics over the model, and show how the theoretical model can be consistently incorporated into a reduced form econometric model. We then estimate the model using data collected for two environmental goods. We find that the predictions of the theoretical exercise that additional experience makes consumers more certain over their preferences in both mean and variance are supported in each case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CSCL applications are complex distributed systems that posespecial requirements towards achieving success in educationalsettings. Flexible and efficient design of collaborative activitiesby educators is a key precondition in order to provide CSCL tailorable systems, capable of adapting to the needs of eachparticular learning environment. Furthermore, some parts ofthose CSCL systems should be reused as often as possible inorder to reduce development costs. In addition, it may be necessary to employ special hardware devices, computational resources that reside in other organizations, or even exceed thepossibilities of one specific organization. Therefore, theproposal of this paper is twofold: collecting collaborativelearning designs (scripting) provided by educators, based onwell-known best practices (collaborative learning flow patterns) in a standard way (IMS-LD) in order to guide the tailoring of CSCL systems by selecting and integrating reusable CSCL software units; and, implementing those units in the form of grid services offered by third party providers. More specifically, this paper outlines a grid-based CSCL system having these features and illustrates its potential scope and applicability by means of a sample collaborative learning scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Baldwin effect can be observed if phenotypic learning influences the evolutionary fitness of individuals, which can in turn accelerate or decelerate evolutionary change. Evidence for both learning-induced acceleration and deceleration can be found in the literature. Although the results for both outcomes were supported by specific mathematical or simulation models, no general predictions have been achieved so far. Here we propose a general framework to predict whether evolution benefits from learning or not. It is formulated in terms of the gain function, which quantifies the proportional change of fitness due to learning depending on the genotype value. With an inductive proof we show that a positive gain-function derivative implies that learning accelerates evolution, and a negative one implies deceleration under the condition that the population is distributed on a monotonic part of the fitness landscape. We show that the gain-function framework explains the results of several specific simulation models. We also use the gain-function framework to shed some light on the results of a recent biological experiment with fruit flies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizing the well-known Ultimatum Game, this note presents the following phenomenon. If we start with simple stimulus-response agents, learning through naive reinforcement, and then grant them some introspective capabilities, we get outcomes that are not closer but farther away from the fully introspective game-theoretic approach. The cause of this is the following: there is an asymmetry in the information that agents can deduce from their experience, and this leads to a bias in their learning process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimax lower bounds for concept learning state, for example, thatfor each sample size $n$ and learning rule $g_n$, there exists a distributionof the observation $X$ and a concept $C$ to be learnt such that the expectederror of $g_n$ is at least a constant times $V/n$, where $V$ is the VC dimensionof the concept class. However, these bounds do not tell anything about therate of decrease of the error for a {\sl fixed} distribution--concept pair.\\In this paper we investigate minimax lower bounds in such a--stronger--sense.We show that for several natural $k$--parameter concept classes, includingthe class of linear halfspaces, the class of balls, the class of polyhedrawith a certain number of faces, and a class of neural networks, for any{\sl sequence} of learning rules $\{g_n\}$, there exists a fixed distributionof $X$ and a fixed concept $C$ such that the expected error is larger thana constant times $k/n$ for {\sl infinitely many n}. We also obtain suchstrong minimax lower bounds for the tail distribution of the probabilityof error, which extend the corresponding minimax lower bounds.