991 resultados para Biological Engineering
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Freeze-drying of biological tissues allows for dry storage and gamma ray sterilization, which may improve their use as a medical prosthesis. The objective of this study was to evaluate the rehydration characteristics and hydrodynamic performance of prosthetic valves before and after lyophilization. Two size 23 bovine pericardium aortic valve prostheses from different manufacturers were evaluated in a Shelhigh (Union, NJ, USA) pulse duplicator (80 ppm, 5 L/min) before and after lyophilization. Flow and transvalvular pressure gradient were registered in vitro and in vivo, and images of opening and closing of the prosthesis were obtained in the pulse duplicator in a digital camera. Rehydration was evaluated by comparison of dry valve weight with valve weight after 15 min, and 1, 24, 48, and 72 h in saline solution, inside the pulse duplicator. In vivo performance was assessed by surgical implantation in Santa Ines young male sheep in the pulmonary position after 30 min rehydration with 0.9% saline. Transvalvular pressure gradient and flow measurements were obtained immediately after implantation and 3 months after surgery when valves were explanted. Captured images showed a change in the profile opening and closing of valve prosthesis after lyophilization. The gradient measured (in vitro) in two valves was 17.08 +/- 0.57 and 18.76 +/- 0.70 mm Hg before lyophilization, and 34.24 +/- 0.59 and 30.40 +/- 0.97 mm Hg after lyophilization. Rehydration of both lyophilized valves was approximately 82%. Drying changed the profile of the opening and closing of valve prostheses, and increased on average by 83% the gradient in vitro tests. The result of the in vivo tests suggests maintaining pressure levels of the animal with the lyophilized prostheses within acceptable levels.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.
Resumo:
A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goias, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18-32 degrees C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18-30 degrees C range (more than 98%), and were also statistically higher than the emergence observed at 32 degrees C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18-32 degrees C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 degrees C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 degrees C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 degrees C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Using the fish silage to partially replace proteic feedstuff in aquafeeds is an alternative to mitigate sanitary and environmental problems caused by the lack of adequate destination for fisheries residues. It would also lower feed costs, consequently improving fish culture profitability. However, using fish silages in aquafeeds depends on determination of its apparent digestibility coefficients (ADC). This work aimed to determining the ADC of crude protein and amino acids of acid silage (AS), biological silage (BS) and enzymatic silage (ES) for juvenile Nile tilapia (94.5 +/- 12.7 g). The ADC(CP) was: 92.0%, 89.1% and 93.7% for AS, BS and SE respectively. The average ADC of amino acids was: 91.8%, 90.8% and 94.6% for AS, BS and ES respectively. Results encourage the use of AS, BS and ES to partially replace protein sources in balanced diets for neotropical fish.
Resumo:
Aceria inusitata Britto and Navia n. sp. (Acari: Eriophyidae) is described from protogynes, deutogynes and two forms of males occurring under a ""patches of webbing"" from ""pau-brasil,"" Caesalpinia echinata L. (Caesalpiniaceae), leaves. This is the first example of a deuterogynous eriophyid mite in tropical regions with two forms of males, one resembling the protogyne and the other the deutogyne. In addition, biological observations are presented. Aberoptus cerostructor Flechtmann, is given a new generic assignment, Aceria cerostructor n. comb.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The first synthesis of two selenyldeoxycyclitols (4-bromo-2-phenylselenyl conduritol F and 6-phenylselenylconduritol F) is reported via a chemoenzymatic enantioselective route. The key step of the synthesis is the selenolysis of a vinyl epoxide. The new compounds were evaluated for their capacity to inhibit the growth of different microorganisms using a modification of the agar diffusion technique with thin layer chromatography plates as support. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Grafts of biological tissues have been used since the 1960s as an alternative to the mechanical heart prostheses. Nowadays, the most consolidated treatment to bovine pericardial (BP) bioprostheses is the crosslinking with glutaraldehyde (GA), although GA may induce calcification in vivo. In previous work, our group demonstrated that electron beam irradiation applied to lyophilized BP in the absence of oxygen promoted crosslinks among collagen fibers of BP tissue. In this work, the incorporation of silk fibroin (SF) and chitosan (CHIT) in the BP not treated with GA was studied. The samples were irradiated and then analyzed for their cytotoxicity and the ability of adhesion and growth of endothelial cells. Initially, all samples showed cytotoxicity. However, after a few washing cycles, the cytotoxicity due to acetic acid and ethanol residues was removed from the biomaterial making it suitable for the biofunctional test. The samples modified with SF/CHIT and electron beam irradiated favored the adhesion and growth of endothelial cells throughout the tissue.
Resumo:
beta-Lactam antimicrobials are known to have a low concentration/therapeutic response. However, extending the period in which beta-lactam are free in the plasma does directly influence therapeutic outcomes. The objective of this study was to evaluate the influence of Pluronic (R) F68 on the antimicrobial activity of ceftazidime when admixed with aminophylline in parenteral solutions by the evaluation of its minimal inhibitory concentration (MIC) within 24 h. Ceftazidime, aminophylline, and Pluronics (R) F68 were evaluated using the MIC method against Escherichia coli and Pseudomonas aeruginosa, with these compounds individually and associated in the same parenteral solutions. When Pluronics (R) F68 was admixtured with ceftazidime alone or with ceftazidime and aminophylline, it was possible to observe lower MIC values not only at 24 h but also at 0 h for both microorganisms. This indicates that Pluronics (R) F68 may be able to enhance ceftazidime antimicrobial activity in the presence or absence of aminophylline. This fact suggests that Pluronics (R) F68 can be applied to allow the administration of ceftazidime under continuous infusion in parenteral solutions, beneficiating hospital pharmacotherapy. It may also be possible to reduce ceftazidime doses in formulations achieving the same therapeutic results. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:715-720, 2011
Resumo:
Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009
Resumo:
BACKGROUND: Aqueous two-phase micellar systems (ATPMS) are micellar surfactant solutions with physical properties that make them very efficient for the extraction/concentration of biological products. In this work the main proposal that has been discussed is the possible applicability and importance of a novel oscillatory flow micro-reactor (micro-OFR) envisaged for parallel screening and/or development of industrial bioprocesses in ATPMS. Based on the technology of oscillatory flow mixing (OFM), this batch or continuous micro-reactor has been presented as a new small-scale alternative for biological or physical-chemical applications. RESULTS: ATPMS experiments were carried out in different OFM conditions (times, temperatures, oscillation frequencies and amplitudes) for the extraction of glucose-6-phosphate dehydrogenase (G6PD) in Triton X-114/buffer with Cibacron Blue as affinity ligand. CONCLUSION: The results suggest the potential use of OFR, considering this process a promising and new alternative for the purification or pre-concentration of bioproducts. Despite the applied homogenization and extraction conditions have presented no improvements in the partitioning selectivity of the target enzyme, when at rest temperature they have influenced the partitioning behavior in Triton X-114 ATPMS. (C) 2011 Society of Chemical Industry
Resumo:
BACKGROUND: Nisin is a commercially available bacteriocin produced by Lactococcus lactis ATCC 11454 and used as a natural agent in the biopreservation of food. In the current investigation, milk whey, a byproduct from dairy industries was used as a fermentation substrate for the production of nisin. Lactococcus lactis ATCC 11454 was developed in a rotary shaker (30 degrees C/36 h/100 rpm) using two different media with milk whey (i) without filtration, pH 6.8, adjusted with NaOH 2 mol L-1 and without pH adjustment, both autoclaved at 121 degrees C for 30 min, and (ii) filtrated (1.20 mu m and 0.22 mu m membrane filter). These cultures were transferred five times using 5 mL aliquots of broth culture for every new volume of the respective media. RESULTS: The results showed that culture media composed of milk whey without filtration supplied L. lactis its adaptation needs better than filtrated milk whey. Nisin titers, in milk whey without filtration (pH adjusted), was 11120.13 mg L-1 in the second transfer, and up to 1628-fold higher than the filtrated milk whey, 6.83 mg.L-1 obtained in the first(t) transfer. CONCLUSIONS: Biological processing of milk byproducts (milk whey) can be considered a profitable alternative, generating high-value bioproducts and contributing to decreasing river disposals by dairy industries. (C) 2008 Society of Chemical Industry.